Математическое выражение закона гука при растяжении. Деформации и перемещения

  • 30.01.2024

Закон Гука был открыт в XVII веке англичанином Робертом Гуком. Это открытие о растяжении пружины является одним из законов теории упругости и выполняет важную роль в науке и технике.

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Законом Гука обычно называют линейные соотношения между компонентами деформаций и компонентами напряжений.

Возьмем элементарный прямоугольный параллелепипед с гранями, параллельными координатным осям, нагруженный нормальным напряжением σ х , равномерно распределенным по двум противоположным граням (рис. 1). При этом σ y = σ z = τ х y = τ х z = τ yz = 0.

Вплоть до достижения предела пропорциональности относительное удлинение дается формулой

где Е — модуль упругости при растяжении. Для стали Е = 2*10 5 МПа , поэтому деформации очень малы и измеряются в процентах или в 1*10 5 (в тензометрических приборах, измеряющих деформации).

Удлинение элемента в направлении оси х сопровождается его сужением в поперечном направлении, определяемом компонентами деформаций

где μ - константа, называемая коэффициентом поперечного сжатия или коэффициентом Пуассона. Для стали μ обычно принимается равным 0,25-0,3.

Если рассматриваемый элемент нагружен одновременно нормальными напряжениями σ x , σ y , σ z , равномерно распределенными по его граням, то добавляются деформации

Производя наложение компонент деформации, вызванных каждым из трех напряжений, получим соотношения

Эти соотношения подтверждаются многочисленными экспериментами. Примененный метод наложения или суперпозиции для отыскания полных деформаций и напряжений, вызванных несколькими силами, является законным, пока деформации и напряжения малы и линейно зависят от приложенных сил. В таких случаях мы пренебрегаем малыми изменениями размеров деформируемого тела и малыми перемещениями точек приложения внешних сил и основываем наши вычисления на начальных размерах и начальной форме тела.

Следует отметить, что из малости перемещений еще не следует линейность соотношений между силами и деформациями. Так, например, в сжатом силами Q стержне, нагруженном дополнительно поперечной силой Р , даже при малом прогибе δ возникает дополнительный момент М = , который делает задачу нелинейной. В таких случаях полные прогибы не являются линейными функциями усилий и не могут быть получены с помощью простого наложения (суперпозиции).

Экспериментально установлено, что если касательные напряжения действуют по всем граням элемента, то искажение соответствующего угла зависит только от соответствующих компонентов касательного напряжения.

Константа G называется модулем упругости при сдвиге или модулем сдвига.

Общий случай деформации элемента от действия на него трех нормальных и трех касательных компонентов напряжений можно получить с помощью наложения: на три линейные деформации, определяемые выражениями (5.2а), накладываются три деформации сдвига, определяемые соотношениями (5.2б). Уравнения (5.2а) и (5.2б) определяют связь между компонентами деформаций и напряжений и называются обобщенным законом Гука . Покажем теперь, что модуль сдвига G выражается через модуль упругости при растяжении Е и коэффициент Пуассона μ . Для этого рассмотрим частный случай, когда σ х = σ , σ y = и σ z = 0.

Вырежем элемент abcd плоскостями, параллельными оси z и наклоненными под углом 45° к осям х и у (рис. 3). Как следует из условий равновесия элемента 0, нормальные напряжения σ v на всех гранях элемента abcd равны нулю, а касательные напряжения равны

Такое напряженное состояние называется чистым сдвигом . Из уравнений (5.2а) следует, что

то есть удлинение горизонтального элемента 0c равно укорочению вертикального элемента 0b : ε y = -ε x .

Угол между гранями аb и bc изменяется, и соответствующую величину деформации сдвига γ можно найти из треугольника 0:

Отсюда следует, что

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Вконтакте

Именно физика является основой основ, именно эта лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо , значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда;
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение : деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 , из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин :

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от);
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

. 

Вывод

Сформулируем закон Гука при растяжении и сжатии : при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

  • 2.6. Предел прочности
  • 2.7. Условие прочности
  • 3.Внутренние силовые факторы (всф)
  • 3.1. Случай воздействия внешних сил в одной плоскости
  • 3.2. Основные соотношения между погонной силой q, поперечной силой Qy и изгибающим моментом Mx
  • Отсюда вытекает соотношение, называемое первым уравнением равновесия элемента балки
  • 4.Эпюры всф
  • 5. Правила контроля построения эпюр
  • 6. Общий случай напряженного состояния
  • 6.1.Нормальные и касательные напряжения
  • 6.2. Закон парности касательных напряжений
  • 7. Деформации
  • 8. Основные предположения и законы, используемые в сопротивлении материалов
  • 8.1. Основные предположения, используемые в сопротивлении материалов
  • 8.2. Основные законы, используемые в сопротивлении материалов
  • При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.
  • 9. Примеры использования законов механики для расчета строительных сооружений
  • 9.1. Расчет статически неопределимых систем
  • 9.1.1. Статически неопределимая железобетонная колонна
  • 9.1.2 Температурные напряжения
  • 9.1.3. Монтажные напряжения
  • 9.1.4. Расчет колонны по теории предельного равновесия
  • 9.2. Особенности температурных и монтажных напряжений
  • 9.2.1. Независимость температурных напряжений от размеров тела
  • 9.2.2. Независимость монтажных напряжений от размеров тела
  • 9.2.3. О температурных и монтажных напряжениях в статически определимых системах
  • 9.3. Независимость предельной нагрузки от самоуравновешенных начальных напряжений
  • 9.4. Некоторые особенности деформирования стержней при растяжении и сжатии с учетом силы тяжести
  • 9.5. Расчет элементов конструкций с трещинами
  • Порядок расчета тел с трещинами
  • 9.6. Расчет конструкций на долговечность
  • 9.6.1. Долговечность железобетонной колонны при наличии ползучести бетона
  • 9.6.2. Условие независимости напряжений от времени в конструкциях из вязкоупругих материалов
  • 9.7 Теория накопления микроповреждений
  • 10. Расчет стержней и стерневых систем на жесткость
  • Составные стержни
  • Стержневые системы
  • 10.1. Формула Мора для вычисления перемещения конструкции
  • 10.2. Формула Мора для стержневых систем
  • 11. Закономерности разрушения материала
  • 11.1. Закономерности сложного напряженного состояния
  • 11.2. Зависимость иот касательных напряжений
  • 11.3. Главные напряжения
  • Вычисление
  • 11.4. Виды разрушений материалов
  • 11.5.Теории кратковременной прочности
  • 11.5.1.Первая теория прочности
  • 11.5.2.Вторая теория прочности
  • 11.5.3.Третья теория прочности (теория максимальных касательных напряжений)
  • 11.5.4.Четвертая теория (энергетическая)
  • 11.5.5. Пятая теория – критерий Мора
  • 12. Краткое изложение теорий прочности в задачах сопротивления материалов
  • 13. Расчет цилиндрической оболочки под воздействием внутреннего давления
  • 14. Усталостное разрушение (циклическая прочность)
  • 14.1. Расчет сооружений при циклическом нагружении с помощью диграммы Вёлера
  • 14.2. Расчет сооружений при циклическом нагружении по теории развивающихся трещин
  • 15. Изгиб балок
  • 15.1. Нормальные напряжения. Формула Навье
  • 15.2. Определение положения нейтральной линии (оси х) в сечении
  • 15.3 Момент сопротивления
  • 15.4 Ошибка Галилея
  • 15.5 Касательные напряжения в балке
  • 15.6. Касательные напряжения в полке двутавра
  • 15.7. Анализ формул для напряжений
  • 15.8. Эффект Эмерсона
  • 15.9. Парадоксы формулы Журавского
  • 15.10. О максимальных касательных напряжениях (τzy)max
  • 15.11. Расчеты балки на прочность
  • 1. Разрушение изломом
  • 2.Разрушение срезом (расслоение).
  • 3. Расчет балки по главным напряжениям.
  • 4. Расчет по III и IV теориям прочности.
  • 16. Расчет балки на жесткость
  • 16.1. Формула Мора для вычисления прогиба
  • 16.1.1 Методы вычисления интегралов. Формулы трапеций и Симпсона
  • Формула трапеций
  • Формула Симпсона
  • . Вычисление прогибов на основе решения дифференциального уравнения изогнутой оси балки
  • 16.2.1 Решение дифференциального уравнения изогнутой оси балки
  • 16.2.2 Правила Клебша
  • 16.2.3 Условия для определения с и d
  • Пример вычисления прогиба
  • 16.2.4. Балки на упругом основании. Закон Винклера
  • 16.4. Уравнение изогнутой оси балки на упругом основании
  • 16.5. Бесконечная балка на упругом основании
  • 17. Потеря устойчивости
  • 17.1 Формула Эйлера
  • 17.2 Другие условия закрепления.
  • 17.3 Предельная гибкость. Длинный стержень.
  • 17.4 Формула Ясинского.
  • 17.5 Продольный изгиб
  • 18. Кручение валов
  • 18.1. Кручение круглых валов
  • 18.2. Напряжения в сечениях вала
  • 18.3. Расчет вала на жесткость
  • 18.4. Свободное кручение тонкостенных стержней
  • 18.5. Напряжения при свободном кручении тонкостенных стержней замкнутого профиля
  • 18.6. Угол закрутки тонкостенных стержней замкнутого профиля
  • 18.7. Кручение стержней открытого профиля
  • 19. Сложная деформация
  • 19.1. Эпюры внутренних силовых факторов (всф)
  • 19.2. Растяжение с изгибом
  • 19.3. Максимальные напряжения при растяжении с изгибом
  • 19.4 Косой изгиб
  • 19.5. Проверка прочности круглых стержней при кручении с изгибом
  • 19.6 Внецентренное сжатие. Ядро сечения
  • 19.7 Построение ядра сечения
  • 20. Динамические задачи
  • 20.1. Удар
  • 20.2 Область применения формулы для коэффициента динамичности
  • Выражение коэффициента динамичности через скорость ударяющего тела
  • 20.4. Принцип Даламбера
  • 20.5. Колебания упругих стержней
  • 20.5.1. Свободные колебания
  • 20.5.2. Вынужденные колебания
  • Способы борьбы с резонансом
  • 20.5.3 Вынужденные колебания стержня с демпфером
  • 21. Теория предельного равновесия и её использование при расчете конструкций
  • 21.1. Задача изгиба балки Предельный момент.
  • 21.2. Применение теории предельного равновесия для расчета
  • Литература
  • Содержание
  • 8.2. Основные законы, используемые в сопротивлении материалов

      Соотношения статики. Их записывают в виде следующих уравнений равновесия.

      Закон Гука (1678 год): чем больше сила, тем больше деформация, причем, прямо пропорционально силе . Физически это означает, что все тела это пружины, но с большой жесткостью. При простом растяжении бруса продольной силой N = F этот закон можно записать в виде:

    Здесь
    продольная сила,l - длина бруса, А - площадь его поперечного сечения, Е - коэффициент упругости первого рода (модуль Юнга ).

    С учетом формул для напряжений и деформаций, закон Гука записывают следующим образом:
    .

    Аналогичная связь наблюдается в экспериментах и между касательными напряжениями и углом сдвига:

    .

    G называют модулем сдвига , реже – модулем упругости второго рода. Как и любой закон, имеет предел применимости и закон Гука. Напряжение
    , до которого справедлив закон Гука, называетсяпределом пропорциональности (это важнейшая характеристика в сопромате).

    Изобразим зависимость от графически (рис.8.1). Эта картина называется диаграммой растяжения . После точки В (т.е. при
    ) эта зависимость перестает быть прямолинейной.

    При
    после разгрузки в теле появляются остаточные деформации, поэтомуназываетсяпределом упругости .

    При достижении напряжением величины σ = σ т многие металлы начинают проявлять свойство, которое называется текучестью . Это означает, что даже при постоянной нагрузке материал продолжает деформироваться (то есть ведет себя как жидкость). Графически это означает, что диаграмма параллельна абсциссе (участок DL). Напряжение σ т, при котором материал течет, называется пределом текучести .

    Некоторые материалы (Ст.3 - строительная сталь) после непродолжительного течения снова начинают сопротивляться. Сопротивление материала продолжается до некоторого максимального значения σ пр, в дальнейшем начинается постепенное разрушение. Величина σ пр - называется пределом прочности (синоним для стали: временное сопротивление, для бетона – кубиковая или призменная прочность). Применяют также и следующие обозначения:

    =R b

    Аналогичная зависимость наблюдается в экспериментах между касательными напряжениями и сдвигами.

    3) Закон Дюгамеля – Неймана (линейного температурного расширения):

    При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур.

    Пусть имеется перепад температур
    . Тогда этот закон имеет вид:

    Здесь α - коэффициент линейного температурного расширения , l - длина стержня, Δ l - его удлинение.

    4) Закон ползучести .

    Исследования показали, что все материалы сильно неоднородны в малом. Схематическое строение стали изображено на рис.8.2.

    Некоторые из составляющих обладают свойствами жидкости, поэтому многие материалы под нагрузкой с течением времени получает дополнительное удлинение
    (рис.8.3.) (металлы при высоких температурах, бетон, дерево, пластики – при обычных температурах). Это явление называетсяползучестью материала.

    Для жидкости справедлив закон: чем больше сила, тем больше скорость движения тела в жидкости . Если это соотношение линейно (т.е. сила пропорциональна скорости), то можно записать его в виде:

    Е
    сли перейти к относительным силам и относительным удлинениям, то получим

    Здесь индекс « cr » означает, что рассматривается та часть удлинения, которая вызвана ползучестью материала. Механическая характеристика называется коэффициентом вязкости.

      Закон сохранения энергии.

    Рассмотрим нагруженный брус

    Введем понятие перемещения точки, например,

    - вертикальное перемещение точки В;

    - горизонтальное смещение точки С.

    Силы
    при этом совершают некоторую работуU . Учитывая, что силы
    начинают возрастать постепенно и предполагая, что возрастают они пропорционально перемещениям, получим:

    .

    Согласно закону сохранения: никакая работа не исчезает, она тратится на совершение другой работы или переходит в другую энергию (энергия – это работа, которую может совершить тело.).

    Работа сил
    , тратится на преодоление сопротивления упругих сил, возникающих в нашем теле. Чтобы подсчитать эту работу учтем, что тело можно считать состоящим из малых упругих частиц. Рассмотрим одну из них:

    Со стороны соседних частиц на него действует напряжение . Равнодействующая напряжений будет

    Под действием частица удлинится. Согласно определению относительное удлинение это удлинение на единицу длины. Тогда:

    Вычислим работу dW , которую совершает сила dN (здесь также учитывается, что силы dN начинают возрастать постепенно и возрастают они пропорциональны перемещениям):

    Для всего тела получим:

    .

    Работа W , которую совершило , называютэнергией упругой деформации.

    Согласно закону сохранения энергии:

    6)Принцип возможных перемещений .

    Это один из вариантов записизакона сохранения энергии.

    Пусть на брус действуют силы F 1 , F 2 ,. Они вызывают в теле перемещения точки
    и напряжения
    . Дадим телудополнительные малые возможные перемещения
    . В механике запись вида
    означает фразу «возможное значение величиныа ». Эти возможные перемещения вызовут в теле дополнительные возможные деформации
    . Они приведут к появлению дополнительных внешних сил и напряжений
    , δ.

    Вычислим работу внешних сил на дополнительных возможных малых перемещениях:

    Здесь
    - дополнительные перемещения тех точек, в которых приложены силыF 1 , F 2 ,

    Рассмотрим снова малый элемент с поперечным сечением dA и длиной dz (см. рис.8.5. и 8.6.). Согласно определению дополнительное удлинение dz этого элемента вычисляется по формуле:

    dz =  dz.

    Сила растяжения элемента будет:

    dN = (+δ) dA dA ..

    Работа внутренних сил на дополнительных перемещениях вычисляется для малого элемента следующим образом:

    dW = dN dz = dA  dz =  dV

    С
    уммируя энергию деформации всех малых элементов получим полную энергию деформации:

    Закон сохранения энергии W = U дает:

    .

    Это соотношение и называется принципом возможных перемещений (его называют также принципом виртуальных перемещений). Аналогично можно рассмотреть случай, когда действуют еще и касательные напряжения. Тогда можно получить, что к энергии деформации W добавится следующее слагаемое:

    Здесь  - касательное напряжение,  -сдвиг малого элемента. Тогда принцип возможных перемещений примет вид:

    В отличие от предыдущей формы записи закона сохранения энергии здесь нет предположения о том, что силы начинают возрастать постепенно, и возрастают они пропорционально перемещениям

    7) Эффект Пуассона.

    Рассмотрим картину удлинения образца:

    Явление укорочения элемента тела поперек направления удлинения называется эффектом Пуассона .

    Найдем продольную относительную деформацию.

    Поперечная относительная деформация будет:

    Коэффициентом Пуассона называется величина:

    Для изотропных материалов (сталь, чугун, бетон) коэффициент Пуассона

    Это означает, что в поперечном направлении деформация меньше продольной.

    Примечание : современные технологии могут создать композиционные материалы, у которых коэффициент Пуассон >1, то есть поперечная деформация будет больше, чем продольная. Например, это имеет место для материала, армированного жесткими волокнами под малым углом
    <<1 (см. рис.8.8.). Оказывается, что коэффициент Пуассона при этом почти пропорционален величине
    , т.е. чем меньше, тем больше коэффициент Пуассона.

    Рис.8.8. Рис.8.9

    Еще более удивительным является материал, приведенный на (рис.8.9.), причем для такого армирования имеет место парадоксальный результат – продольное удлинение ведет к увеличению размеров тела и в поперечном направлении.

    8) Обобщенный закон Гука.

    Рассмотрим элемент, который растягивается в продольном и поперечном направлениях. Найдем деформацию, возникающую в этих направлениях.

    Вычислим деформацию , возникающую от действия:

    Рассмотрим деформацию от действия , которая возникает в результате эффекта Пуассона:

    Общая деформация будет:

    Если действует и , то добавиться еще одно укорочение в направлении осиx
    .

    Следовательно:

    Аналогично:

    Эти соотношения называются обобщенным законом Гука.

    Интересно, что при записи закона Гука делается предположение о независимости деформаций удлинения от деформаций сдвига (о независимости от касательных напряжений, что одно и то же) и наоборот. Эксперименты хорошо подтверждают эти предположения. Забегая вперед, отметим, что прочность напротив сильно зависит от сочетания касательных и нормальных напряжений.

    Примечание: Приведенные выше законы и предположения подтверждаются многочисленными прямыми и косвенными экспериментами, но, как и все другие законы, имеют ограниченную область применимости.

    Рассмотренные выше напряженное и деформированное состояния являются составляющими единой физической сущности - напряженно-деформированного состояния в точке тела.

    При решении конкретных задач необходимо принимать в расчет физические соотношения, существующие между напряжениями и деформациями. В статически определимых задачах существует возможность найти напряжения без физических соотношений, используя только уравнения равновесия. В статически неопределимых задачах такая возможность отсутствует.

    Зависимость между напряжениями и деформациями, как правило, устанавливается с помощью экспериментов, и ее сложность зависит от свойств материала. Для широко применяемых на практике изотропных материалов используются линейные зависимости, с помощью которых удается проводить расчеты при изменении напряжений в довольно широких пределах.

    Проанализируем зависимость между компонентами напряженного и деформированного состояний в точке тела, используя принцип независимости действия сил. С этой целью вырежем из твердого тела элементарный параллелепипед (рис. 10.10).

    Рис. 10.10.

    Рассмотрим случай действия на элемент только касательного напряжения т гу/ (рис. 10.10, а). В этом случае прямой угол изменяется только в плоскостях, параллельных плоскости ху. Аналогично можем рассмотреть угловые перемещения, которые возникают от действия касательных напряжений x yz и x zv . В предположении о том, что материал изотропен и между касательными напряжениями и угловыми перемещениями существует линейная зависимость, приходим к соотношениям

    где G - модуль упругости второго рода.

    Проанализируем перемещения, вызываемые действием нормальных напряжений в направлении оси Ох (рис. 10.10, б). Обусловленная этим напряжением деформация в направлении оси Ох равна ct v /?, а в направлении двух других осей перемещения определяются с помощью коэффициента Пуассона v по формуле -vg v /?. Аналогично определяются деформации в направлении оси Ох от а у и а 2 . Окончательно суммированием деформаций по всем направлениям получим

    При изменении температуры тела к правым частям соотношений (10.38) следует добавить величины аAt, где At - изменение температуры тела; а - коэффициент линейного температурного расширения изотропного материала. Что касается формул (10.37), то они останутся без изменений.

    Соотношения (10.37) и (10.38) носят название обобщенного закона Гука для случая линейно-упругого изотропного материала.

    При проведении расчетов полезными оказываются и обратные соотношения:


    Отметим, что при выводе физических соотношений мы негласно предполагали, что направления главных напряжений и главных деформаций совпадают друг с другом. Данное предположение носит название условия соосности тензоров напряжений и деформаций.

    В случае анизотропных материалов, свойства которых в различных направлениях отличаются, условие соосности не выполняется. Для упругих анизотропных материалов обобщенный закон Гука записывается в следующем виде:


    Здесь a t - - постоянные упругости, которые выражают свойства материала. Введем обозначения


    Тогда соотношения (10.40) можем представить в векторно-матричном виде:

    где {а} и {е} - векторы, соответственно, напряжений и деформаций ; [А] матрица упругих свойств материала.

    Для изотропного линейно-упругого материала из трех постоянных Е, G и v, как мы установили ранее, независимыми являются только две из них. Матрица упругих свойств такого материала выглядит следующим образом:


    При записи обобщенного закона Гука для анизотропного материала (10.40) использовано 36 констант. Установим, сколько из этих величин являются независимыми. Рассмотрим два напряженных состояния (рис. 10.11).


    Рис. 10.11.

    Удлинение элемента в направлении у , обусловленное напряженным состоянием первого направления (рис. 10.11, а), равно dA vl/ = a 2 p x dy. Аналогично определяется удлинение элемента в первом направлении, обусловленное вторым напряженным состоянием (рис. 10.11, б): dA f/x = a x p y dx.

    Согласно принципу взаимности работ

    откуда следует, что я |2 = а 21 .

    Аналогичным образом можно получить еще 14 равенств a:j = a jt , i,j = 1, 2,..., 6, i * j. Матрица податливости материала А является симметричной. Таким образом, для анизотропных материалов из 36 характеристик независимыми являются только 21.

    При анализе композитных материалов приходится иметь дело с частными случаями анизотропии. Распространенным является случай ортотроп- ного материала, характеризуемый симметрией относительно трех взаимно перпендикулярных осей. Примером такой анизотропии является древесина. Упругие свойства ортотропной среды описываются девятью независимыми постоянными:


    где по свойству симметрии

    Упругие постоянные композитных материалов в большинстве случаев определяются экспериментально.

    • Запись напряжений и деформаций в виде векторных величин носит формальный характер и вводится для удобства.