В чем заключается биологический смысл пластического обмена. Пластический обмен: характеристика, функции, этапы

  • 12.10.2019

Метаболизм, то есть совокупность всех химических реакций, происходящих в организме, включает в себя энергетический и пластический обмен. Первый - это реакции, направленные на получение энергии вследствие расщепления сложных органических соединений на более простые. Он еще называется катаболизмом. Пластический обмен называют еще анаболизмом. Он подразумевает реакции, с помощью которых организм синтезирует нужные ему сложные химические вещества из простых с использованием энергии. Таким образом, получается, что, добыв энергию в процессе катаболизма, часть её организм тратит на синтез новых органических веществ.

Энергетический обмен: особенности и этапы

Этот вид обмена веществ осуществляется в три стадии: подготовительная, анаэробное брожение, или гликолиз, и клеточное дыхание. Рассмотрим их более подробно:

Пластический обмен — это что? Какие у него особенности?

Рассмотрев процесс катаболизма, можно перейти к описанию анаболизма, который является важной составляющей обмена веществ. Вследствие этого процесса образуются вещества, из которых построена клетка и весь организм в целом, которые могут служить в качестве гормонов или ферментов и т. д. Пластический обмен (он же биосинтез, или анаболизм) происходит, в отличие от катаболизма, исключительно в клетке. Он включает в себя три разновидности: фотосинтез, хемосинтез и биосинтез белков. Первый используется только растениями и некоторыми фотосинтезирующими бактериями. Такие организмы называются автотрофами, так как сами вырабатывают для себя органические соединения из неорганических. Второй используется определенными бактериями, в том числе и анаэробными, для жизни которых не требуется кислород. Формы жизни, использующие хемосинтез, называются хемотрофами. Животные и грибы относятся к гетеротрофам — существам, которые получают органические вещества из других организмов.

Фотосинтез

Это процесс, который, по сути, является основой жизни на планете Земля. Всем известно, что растения забирают из атмосферы углекислый газ и отдают кислород, но давайте более подробно рассмотрим, что же происходит во время фотосинтеза. Этот процесс осуществляется посредством реакции, которая предусматривает образование глюкозы и кислорода из углекислого газа и воды. Очень важный фактор - наличие солнечной энергии. Во время такого химического взаимодействия из шести молекул углекислого газа и воды образуется шесть молекул кислорода и одна - глюкозы.

Где происходит этот процесс?

Местом проведения подобного рода реакции являются зеленые листья растений, а точнее хлоропласты, которые содержатся в их клетках. В этих органеллах содержится хлорофилл, благодаря которому и происходит фотосинтез. Данное вещество также обеспечивает зеленый цвет листков. Хлоропласт окружен двумя мембранами, а в его цитоплазме расположены граны — стопки из тилакоидов, которые имеют собственную мембрану и содержат хлорофилл.

Хемосинтез

Хемосинтез — это также пластический обмен. только характерен он для микроорганизмов, в том числе и серных, нитрифицирующих и железобактерий. Они используют энергию, полученную в процессе окисления определенных веществ, для восстановления углекислого газа до органических соединений. Веществами же, которые окисляются данными бактериями в процессе энергетического обмена, являются сероводород для первых, аммиак для вторых и закись железа для последних.

Биосинтез белков

Обмен белков в организме подразумевает расщепление тех, которые были употреблены в пищу, на аминокислоты и построение из последних своих собственных белков, свойственных именно данному живому существу. Пластический обмен - это синтез белков клеткой, он включает в себя два основных процесса: транскрипцию и трансляцию.

Транскрипция

Это слово многим известно из уроков английского языка, однако в биологии данный термин имеет совсем другое значение. Транскрипция — это процесс синтеза информационной РНК с помощью ДНК по принципу комплементарности. Осуществляется он в ядре клетки и насчитывает три стадии: образование первичного транскрипта, процессинг и сплайсинг.

Трансляция

Этот термин обозначает перенос зашифрованной на иРНК информации о структуре белка на синтезирующийся полипептид. Местом для проведения данного процесса служит цитоплазма клетки, а именно, рибосома — специальный органоид, который отвечает за синтез белков. Это органелла овальной формы, состоящая из двух частей, которые соединяются в присутствии иРНК.

Трансляция происходит в четыре этапа. На первой стадии аминокислоты активируются специальным ферментом под названием аминоацил Т-РНК-синтетаза. Для этого также используется АТФ. Впоследствии образуется аминоациладенилат. Далее следует процесс присоединения активированной аминокислоты к транспортной РНК, при этом выделяется АМФ (аденозинмонофосфат). Затем, на третьем этапе, образованный комплекс соединяется с рибосомой. Далее происходит включение аминокислот в структуру белка в определенном порядке, после чего тРНК высвобождается.

Работа всех систем в организме непрерывна. В нём постоянно протекают сложные химические реакции, обеспечивающие нормальную жизнедеятельность. Одним из самых важных процессов является обмен веществ и энергии, то есть метаболизм.

Именно благодаря ему, клетки сохраняют постоянство состава, растут, функционируют, а также обновляются. Процесс этот непростой и состоит из двух видов обмена - пластического и энергетического, которые, в свою очередь, имеют несколько стадий.

Одноклассники

В организме непрерывно происходит как расщепление сложных веществ на более простые, так и синтез необходимых соединений из различных элементов. В результате первого типа реакций, который называется энергетическим обменом, или катаболизмом, тело человека получает необходимую для нормального функционирования энергию. Но её часть расходуется на создание новых соединений, которые нужны для жизнедеятельности. Такой процесс носит название пластического обмена, или анаболизма.

Энергетический обмен

Катаболизм , называемый также диссимиляцией , происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые уже нельзя использовать.

Этот процесс аналогичен горению, ведь в его результате выделяются те же вещества. Но он происходит с куда большей скоростью и не нуждается в высоких температурах. Кроме того, важным отличием является то, что энергия не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд организма. Это делает процесс невероятно эффективным и уникальным.

Распад веществ для получения организмом энергии - это то, что характеризует энергетический обмен в клетке. Происходит он в несколько стадий:

  • подготовительная;
  • неполная (анаэробное дыхание);
  • аэробное дыхание.

Каждая из этих стадий имеет свои особенности и играет важную роль в метаболизме в целом. Далее будет более подробно рассказано про каждую из них.

Подготовительный этап

Единственная из стадий, которая протекает в желудочно-кишечном тракте. Она заключается в пищеварении, то есть распаде сложных органических соединений на простые. Распад у сложных организмов осуществляется под действием пищеварительных ферментов, а у одноклеточных - с помощью лизосом. При этом белки распадаются на аминокислоты, жиры - на алифатические карбоновые кислоты и глицерин, углеводы - на сахариды, нуклеиновые кислоты - на нуклеотиды .

При всех этих процессах дополнительно выделяется энергия в виде тепла, но не в самых больших количествах. Далее процессы происходят на клеточном уровне.

Анаэробное дыхание

Эта стадия называется также гликолизом применительно к царству животных, или брожением , если имеются в виду растения и микроорганизмы. Весь процесс происходит в цитоплазме клеток за счёт работы ферментов.

Он продолжает предыдущую стадию тем, что из моносахарида, коим является глюкоза, выделяются ещё более простые вещества - спирт и углекислый газ, а также кислоты.

Этот вид обмена универсален для всех организмов и используется даже в повседневной жизни. Поскольку он протекает и в бактериях, его широко применяют в пищевой промышленности: дрожжи производят этиловый спирт, кисломолочные бактерии - молочную кислоту, а животные клетки - пировиноградную. В некоторых микроорганизмах выделяется ацетон и этановая кислота.

При этом также выделяется энергия, часть которой запасается в двух молекулах аденозинтрифосфата (АТФ), и некоторое количество рассеивается с выделением тепла. Но двух молекул АТФ недостаточно для полноценной работы организма, поэтому за анаэробным этапом последует кислородное расщепление.

Аэробное дыхание

Другие названия этого этапа - клеточное дыхание , или кислородное расщепление . Как видно из названия, процесс невозможен без кислорода, который выступает в роли окислителя продуктов распада глюкозы. Помимо кислорода, в работе участвует фосфорная кислота и аденозиндифосфат (АДФ). Под действием ферментов они без повышения температуры моментально сжигают органические вещества до углекислого газа и воды.

Благодаря окислению из одной молекулы вещества (образовавшиеся на предыдущем этапе молочная, пировиноградная кислоты и так далее) клетка получает 18 АТФ, каждая из которых служит мощным источником энергии. Этот этап происходит в митохондриях клетки и является самым важным во всём энергетическом обмене, так как обеспечивает клетку большим количеством АТФ.

Пластический обмен

Пластический обмен ещё называется анаболизмом, ассимиляцией и биосинтезом. Он является не менее важной составляющей метаболизма, ведь именно пластический обмен в клетке характеризуется синтезом новых веществ, что обеспечивает образование ферментов, гормонов, а также белков, липидов и других веществ, участвующих в построении клеток, межклеточного пространства и других составляющих организма. Так же, как и энергетический обмен, он является сложным и протекает во многих организмах. Далее будут приведены примеры и процессы пластического обмена.

  • , который свойственен растениям, а также некоторым бактериям. Они называются автотрофами, поскольку способны самостоятельно синтезировать необходимые для жизни органические вещества из неорганических соединений.
  • Хемосинтез протекает у бактерий, называемых хемотрофами. И они также могут обеспечивать себя необходимыми органическими соединениями. Для их жизнедеятельности не нужен кислород, они используют диоксид углерода.
  • Биосинтез белков осуществляется в живых организмах. К ним относятся и гетеротрофы, которые, в отличие от двух предыдущих упоминаемых форм, неспособны самостоятельно обеспечивать себя органическими веществами, а поэтому получают их с помощью других организмов.

Остановимся на этих процессах более подробно.

Процесс, без которого не была бы возможна жизнь на Земле. Многим формам жизни для дыхания нужен кислород взамен выдыхаемого ими в воздух углекислого газа. Этим важным веществом нас обеспечивают растения, в зелёных листьях которых содержатся хлоропласты. Их окружает пара мембран, поскольку внутри хлоропласта в цитоплазме содержатся ценные граны с собственными защитными оболочками. В этих стопках тилакоидов, в свою очередь, присутствует хлорофилл, отвечающий за цвет растения, но главное - делающий процесс фотосинтеза возможным.

Осуществляется он посредством соединения шести молекул углекислого газа с водой, в результате чего образуется глюкоза. Побочным продуктом реакции является жизненно необходимый кислород. Процесс возможен только на свету, при использовании солнечной энергии.

Хемосинтез

Хемосинтез протекает у микроорганизмов, также способных к самостоятельному преобразованию неорганических соединений в органические. К ним относятся:

Окисление углекислого газа происходит без участия кислорода, с использованием запасённой ранее энергии. Из диоксида углерода синтезируются органические вещества, необходимые для жизнедеятельности.

Биосинтез белков

Сложный процесс, направленный на разложение попадающих в организм белков на составляющие, из которых впоследствии синтезируются собственные уникальные белки. Состоит из двух стадий.

Транскрипция - процесс, состоящий из трёх этапов (образование транскрипта, процессинг, сплайсинг), которые происходят в ядре клетки. Они направлены на создание информационной РНК (иРНК) из ДНК. В результате новый полимер полностью копирует небольшой участок нити ДНК с той разницей, что тимину в нём эквивалентен урацил.

Трансляция - перенос информации с синтезированной на предыдущем этапе молекулы РНК на строящийся полипептид с указаниями о его будущей структуре. Процесс происходит на рибосомах, расположенных в цитоплазме клетки. Они имеют овальную форму и состоят из частей, которые могут соединяться только при наличии иРНК. Сам перенос информации осуществляется в несколько этапов.

Итак, все вещества, поступающие в живой организм, распределяются в нём так, чтобы приносить ему пользу. Сложные распадаются с выделением энергии, необходимой для дальнейшей жизнедеятельности (например, выполнение физической или умственной работы человеком), запасаемой в АТФ. А из простых веществ организм синтезирует новые соединения с использованием энергии, накопившейся в универсальном источнике - молекуле той самой АТФ. При этом энергия не расходуется безвозвратно - она запасается в новых соединениях.

Диссимиляция и ассимиляция в корне отличаются друг от друга, но при этом они неразрывно связаны. Ведь именно катаболизм даёт энергию, без которой невозможен анаболизм, то есть синтез необходимых организму веществ. Вот почему эти два процесса являются очень важными.

В клетке обнаружены примерно тысяча ферментов. С помощью такого мощного каталитического аппарата осуществляется сложнейшая и многообразная химическая деятельность. Из громадного числа химических реакций клетки выделяются два противоположных типа реакций - синтез и расщепление.

Реакция синтеза. В клетке постоянно идут процессы созидания. Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные. Синтезируются белки , сложные углеводы , жиры , нуклеиновые кислоты . Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, постоянно происходит синтез веществ для замены молекул, израсходованных или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянными свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называют биологическим синтезом или сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты , крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО2 и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция , биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называют обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

АТФ как единое и универсальное энергетическое вещество. Все проявления жизнедеятельности, все функции клетки осуществляются с затратой энергии. Энергия требует для движения биосинтетических реакций, переноса веществ через клеточные мембраны, для любых форм клеточной активности.

Источником энергии в живых клетках, обеспечивающим все виды их деятельности, является аденозинтрифосфорная кислота (АТФ). Освобождающаяся при расщеплении АТФ энергия обеспечивает любые виды клеточных функций - движение, биосинтез, перенос веществ через мембраны и др. Так как запас АТФ в клетке невелик, то понятно, что по мере убыли АТФ содержание ее должно восстанавливаться. В действительности так и происходит. Биологический смыл остальных реакций энергетического обмена и состоит в том, что энергия, освобождающаяся в результате химических реакций окисления углеводов и других веществ, используется для синтеза АТФ, т. е. для восполнения ее запаса в клетке. При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышцы работают почти исключительно за счет распада содержащейся в них АТФ. После окончания бега спортсмен усиленно дышит, разогревается: в этот период происходит интенсивное окисление углеводов и других веществ для восполнения убыли израсходованной АТФ. При длительной и не очень напряженной работе содержание АТФ в клетках может существенно не изменяться, так как реакции окисления успевают обеспечить быстрое и полное восстановление израсходованной АТФ.

Итак, АТФ представляет единый и универсальный источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие и заготовка энергии впрок. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время.

Синтез АТФ осуществляется главным образом в митохондриях. Именно поэтому митохондрии называют "силовыми станциями" клетки. Образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те участки клетки, где возникает потребность в энергии.

Этапы энергетического обмена. Для изучения энергетического обмена клетки его удобно разделить на три последовательных этапа. Рассмотрим их на примере животной клетки.

Первый этап подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, нуклеиновых кислот распадаются на мелкие молекулы: из крахмала образуется глюкоза , из жиров - глицерин и жирные кислоты, из белков - аминокислоты, из нуклеиновых кислот - нуклеотиды . Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освобождающаяся при этом энергии рассеивается в виде тепла.

Второй этап энергетического обмена называют бескислородным или неполным. Вещества, образовавшиеся в подготовительном этапе - глюкоза, глицерин, органические кислоты, аминокислоты и др. - вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций. Ферменты , обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее - на третий и т. д. Это обеспечивает быстрое и эффективное течение процесса. Разберем его на примере бескислородного расщепления глюкозы, которое имеет специальное название - гликолиза. Гликолиз представляет собой ряд последовательных ферментативных реакций. Его обслуживает 13 различных ферментов, и в ходе его образуется более десятка промежуточных веществ. Многие промежуточные реакции гликолиза идут с участием фосфорной кислоты Н3РО4. В нескольких реакциях участвует АДФ. Не останавливаясь на деталях, укажем лишь, что на начальные ступени ферментного конвейера вступают шестиуглеродная глюкоза, Н3РО4 и АДФ, а с последних сходят трехуглеродная молочная кислота, АДФ и вода . Суммарное уравнение гликолиза должно быть записано так:

С6Н12О6+2Н3РО4+2АДФ =2С3Н6О3+2АТФ+2Н2О

Процесс гликолиза происходит у всех животных клеток и у некоторых микроорганизмов. Всем известное молочнокислое брожение (при скисании молока, образовании простокваши, сметаны, кефира) вызывается молочнокислыми грибами и бактериями. По механизму оно вполне тождественно гликолизу.

У растительных клеток и у некоторых дрожжевых грибов распад глюкозы осуществляется путем спиртового брожения. Спиртовое брожение, как и гликолиз, представляет длинный ряд ферментативных реакций, причем большая часть реакций гликолиза и спиртового брожения полностью совпадают, и только на самых последних этапах есть некоторые различия. В ряде промежуточных реакций спиртового брожения, как и при гликолизе, принимают участие Н3РО4 и АДФ. Конечными продуктами спиртового брожения являются двуокись углерода, этиловый спирт, АТФ и вода. Суммарное уравнение спиртового брожения следует записать так:

С6Н12О6+2Н3РО4+2АДФ = 2СО2+2С2Н5ОН+2АТФ+2Н2О

Из приведенных уравнений гликолиза и спиртового брожения видно, что в этих процессах не участвует кислород, поэтому их назвают бескислородными, или с неполным расщеплением, так как полное расщепление - это расщепление до конца, т. е. превращение глюкозы в простейшие соединения - СО2 и Н2О, что соответствует уравнению

С6Н12О6+6О2= 6СО2+6Н2О

Наконец, и это особенно важно, из уравнений следует, что при распаде одной молекулы глюкозы в ходе гликолиза и спиртового брожения образуются две молекулы АТФ. Следовательно, распад глюкозы в процессе гликолиза и спиртового брожения сопряжен с синтезом универсального энергетического вещества АТФ.

Так как синтез АТФ представляет эндотермический процесс, то, очевидно, энергия для синтеза АТФ черпается за счет энергии реакций бескислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

Произведем несложный расчет: всего в ходе бескислородного расщепления грамм-молекулы глюкозы, освобождается 200 кдж (50 ккал). На образование одной связи, богатой энергией, при превращении грамм-молекулы АДФ и АТФ затрачивается 40 кдж (10 ккал).

В ходе бескислородного расщепления образуются две такие связи. Таким образом, в энергию двух грамм-молекул АТФ переходит 2Х40=80 кдж (2Х10=20 ккал). Итак, из 200 кдж (50 ккал) только 80 (20) сберегаются в виде АТФ, а 120 (30 ккал) рассеиваются в виде тепла. Следовательно, в ходе бескислородного расщепления глюкозы 40% энергии сберегается клеткой.

Третий этап энергетического обмена - стадия кислород-ного, или полного расщепления, или дыхания. Продукты, возникшие в предшествующей стадии, окисляются до конца, т. е. до СО2 и Н2О.

Основное условие осуществления этого процесса - наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия бескислородного расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления - СО2 и Н2О.

Все промежуточные реакции кислородного расщепления, как и промежуточные реакции бескислородного процесса, идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном процессе, много больше, чем на каждой ступени бескислрородного процесса. В сумме кислородное расщепление дает громадную величину - 2600 кдж (650 ккал). Если бы вся эта энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении процесса на ряд промежуточных звеньев такой опасности нет.

Подробное исследование реакций кислородного расщепления показало, что в этих реакциях, как и в реакциях бескислородного процесса, принимает участие Н3РО4 и АДФ и что кислородный процесс, как и бескислородный, сопряжен с синтезом АТФ. В ходе кислородного расщепления двух трехуглеродных молекул происходит образование 36 молекул АТФ - 36 богатых энергией фосфатных связей. Таким образом, суммарное уравнение кислородного процесса можно записать так:

2С3Н6О3+6О2+36Н3РО4+36АДФ =6СО2+6Н2О+36АТФ+36Н2О, а суммарное уравнение полного расщепления глюкозы так:

С6Н12О6+6О2+38Н3РО4+38АДФ =6СО2+6Н2О+38АТФ+38Н2О

Теперь должно быть ясно значение для клетки третьей, кислородной стадии энергетического обмена. Если в ходе бескислородного расщепления освобождается 200 кдж/моль (50 ккал/моль) глюкозы, то в стадии кислородного процесса освобождается 2600 кдж (650 ккал), т. е. в 13 раз больше. Если в ходе бескислородного расщепления синтезируются две молекулы АТФ, то в кислородную стадию их образуется 36, т. е. в 18 раз больше. Иными словами, в ходе расщепления глюкозы в клетке на стадии кислородного процесса освобождается и преобразуется в другие формы энергии свыше 90% энергии глюкозы.

Займемся снова расчетом. Всего в процессе расщепления глюкозы до СО2 и Н2О, т. е. в ходе кислородного и бескислородного процессов, синтезируется 2+36=38 молекул АТФ. Таким образом, в потенциальную энергию АТФ переходит 38 Х 40=1520 кдж (38 Х 10=380 ккал). Всего при расщеплении глюкозы (в бескислродную и кислородную стадии) освобождается 200+2600=2800 кдж (50+650= 700 ккал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла. Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12 - 15%. В двигателях внутреннего сгорания он достигает примерно 35%. Таким образом, по эффективности преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

При сопоставлении количества энергии, освобождаемой в ходе бескислородного и кислородного расщепления глюкозы, а также числа молекул АТФ, синтезируемых в обе стадии, видно, что кислородный процесс несравненно более эффективен, чем бескислородный. Вполне понятно поэтому, что в нормальных условиях для мобилизации энергии в клетке всегда используется как бескислородный, так и кислородный путь расщепления. Если осуществление кислородного процесса затруднено или вовсе невозможно, например при недостатке кислорода, тогда для поддержания жизни остается только бескислородный процесс. Но при этом для получения АТФ в количестве, необходимом для жизнедеятельности, клетке приходится расщеплять очень большое количество глюкозы.

Дыхание и горение. Окисление органических веществ, происходящее в клетке, часто сравнивают с горением: в обоих случаях происходит поглощение кислорода и выделение СО2 и Н2О. Однако между этими процессами имеются глубокие различия. Дыхание представляет высокоупорядоченный, многоэтапный процесс. Благодаря участию в нем ферментов оно идет с достаточной скоростью при температуре, несравненно более низкой, чем горение. Принципиально отличается в обоих процессах способ преобразования химической энергии расщепляемых веществ. При горении вся энергия переходит в тепловую. Дальнейшее использование ее для производства работы всегда происходит с низким к. п. д. При биологическом окислении главная часть энергии переходит в химическую энергию универсального энергетического вещества - АТФ, которое в дальнейшем используется клеткой с к. п. д., недостижимым для тепловых двигателей.

В клетках постоянно осуществляются обмен веществ (метаболизм) — многообразные химические превращения, обеспечивающие их рост, жизнедеятельность, постоянный контакт и обмен с окружающей средой. Благодаря обмену веществ белки, жиры, углеводы и другие вещества, входящие в состав клетки, непрерывно расщепляются и синтезируются. Реакции, составляющие эти процессы, происходят с помощью специальных ферментов в определенном органоиде клетки и характеризуются высокой организованностью и упорядоченностью. Благодаря этому в клетках достигается относительное постоянство состава, образование, разрушение и обновление клеточных структур и межклеточного вещества.

Обмен веществ неразрывно связан с процессами превращения энергии. В результате химических превращений потенциальная энергия химических связей преобразуется в другие виды энергии, используемой на синтез новых соединений, для поддержания структуры и функции клеток и т.д.

Обмен веществ складывается из двух взаимосвязанных, одновременно протекающих в организме процессов — пластического и энергетического обменов .

Пластический обмен (анаболизм, ассимиляция) — совокупность всех реакций биологического синтеза. Эти вещества идут на построение органоидов клетки и создание новых клеток при делении.Пластический обмен всегда сопровождается поглощением энергии.

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления сложных высокомолекулярных органических веществ — белков, нуклеиновых кислот, жиров, углеводов на более простые, низкомолекулярные. При этом выделяется энергия, заключенная в химических связях крупных органических молекул. Освобожденная энергия запасается в форме богатых энергией фосфатных связей АТФ.

Реакции пластического и энергетического обменов взаимосвязаны и в своем единстве составляют обмен веществ и превращение энергии в каждой клетке и в организме в целом.

Пластический обмен

Суть пластического обмена заключается в том, что из простых веществ, поступающих в клетку извне, образуются вещества клетки. Рассмотрим этот процесс на примере образования важнейших органических соединений клетки — белков.

В синтезе белка — этом сложном, многоступенчатом процессе —участвуют ДНК, мРНК, тРНК, рибосомы, АТФ и разнообразные ферменты. Начальный этап белкового синтеза — образование полипептидной цепи из отдельных аминокислот, расположенных в

строго определенной последовательности. Главная роль в определении порядка расположения аминокислот, т.е. первичной структуры белка, принадлежит молекулам ДНК. Последовательность аминокислот в белках определена последовательностью нуклеотидов в молекуле ДНК. Участок ДНК, характеризующийся определенной последовательностью нуклеотидов, называется геном. Ген — это участок ДНК, являющийся элементарной частицей генетической информации. Таким образом, синтез каждого определенного специфического белка определяется геном. Каждой аминокислоте в полипептидной цепочке соответствует комбинация из трех нуклеотидов — триплет, или кодон. Именно три нуклеотида определяют присоединение к полипептидной цепи одной аминокислоты. Например, участок ДНК с триплетом ААЦ соответствует аминокислоте лейцину, триплет ТТТ — лизину, ТГА — треонину. Данная корреляция между нуклеотидами и аминокислотами называется генетическим кодом. В состав белков входит 20 аминокислот и всего 4 нуклеотида. Только код, состоящий из трех последовательно расположенных оснований, мог бы обеспечить задействование всех 20 аминокислот в структурах белковых молекул. Всего в генетическом коде 64 разных триплета, представляющих возможные сочетания из четырех азотистых оснований по три, что с избытком достаточно для кодирования 20 аминокислот. Каждый триплет шифрует одну аминокислоту, но большинство аминокислот кодируется более чем одним кодоном. В настоящее время код ДНК расшифрован полностью. Для каждой аминокислоты точно установлен состав кодирующих ее триплетов. Например, аминокислоте аргинин могут соответствовать такие триплеты нуклеотидов ДНК, как ГЦА, гцг, гцт, гцц, тцт, тцц.

Синтез белка осуществляется на рибосомах, а информация о структуре белка зашифрована в ДНК, расположенной в ядре. Для того чтобы синтезировался белок, информация о последовательности аминокислот в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа: транскрипцию и трансляцию.

Транскрипция (буквально — переписывание) протекает как реакция матричного синтеза. На цепи ДНК, как на матрице, по принципу комплементарности синтезируется цепь иРНК, которая по своей нуклеотидной последовательности точно копирует (комплементарна) полинуклеотидной цепи ДНК, причем тимину в ДНК соответствует урацил в РНК. Информационная РНК — это копия не всей молекулы ДНК, а только части ее — одного гена, несущего информацию о структуре белка, сборку которого необходимо произвести. Существуют специальные механизмы «узнавания» начальной точки синтеза, выбора цепи ДНК, с которой считывается информация, а также механизмы завершения процесса, в которых участвуют специальные кодоны. Так образуется матричная РНК. Молекула мРНК, несущая ту же информацию, что и гены, выходит в цитоплазму. Перемещение РНК через ядерную оболочку в цитоплазму происходит благодаря специальным белкам, которые образуют комплекс с молекулой РНК.

В цитоплазме на один из концов молекулы мРНК нанизывается рибосома; аминокислоты в цитоплазме активизируются с помощью ферментов и присоединяются опять же с помощью специальных ферментов к тРНК (специальному участку связывания с этой аминокислотой). Для каждой аминокислоты существует своя тРНК, один из участков которой (антикодон) представляет собой триплет нуклеотидов, соответствующий определенной аминокислоте и комплементарный строго определенному триплету иРНК.

Начинается следующий этап биосинтеза — трансляция : сборка полипептидных цепей на матрице иРНК. По мере сборки белковой молекулы рибосома перемещается по молекуле иРНК, причем перемещается не плавно, а прерывисто, триплет за триплетом. По мере перемещения рибосомы по молекуле мРНК сюда же с помощью тРНК доставляются аминокислоты, соответствующие триплетам мРНК. К каждому триплету, на котором останавливается в своем передвижении по нитевидной молекуле мРНК рибосома, строго комплементарно присоединяется тРНК. При этом аминокислота, связанная с тРНК, оказывается у активного центра рибосомы. Здесь специальные ферменты рибосомы отщепляют аминокислоту от тРНК и присоединяют к предыдущей аминокислоте. После установки первой аминокислоты рибосома передвигается на один триплет, а тРНК, оставив аминокислоту, мигрирует в цитоплазму за следующей аминокислотой. С помощью такого механизма шаг за шагом наращивается белковая цепь. Аминокислоты соединяются в ней в строгом соответствии с расположением кодирующих триплетов в цепи молекулы мРНК. Чем дальше продвинулась рибосома по иРНК, тем больший отрезок белковой молекулы «собран». Когда рибосома достигнет противоположного конца иРНК, синтез окончен. Нитевидная молекула белка отделяется от рибосомы. Молекула мРНК может использоваться для синтеза полипептидов многократно, как и рибосома. На одной молекуле иРНК может размещаться несколько рибосом (полирибосома). Их число определяется длиной мРНК.

Биосинтез белков — сложный многоступенчатый процесс, каждое звено которого катализируется определенными ферментами и снабжается энергией за счет молекул АТФ.

Энергетический обмен

Процессом, противоположным синтезу, является диссимиляция — совокупность реакций расщепления. В результате диссимиляции освобождается энергия, заключенная в химических связях пищевых веществ. Эта энергия используется клеткой для осуществления различной работы, в том числе и ассимиляции. При расщеплении пищевых веществ энергия выделяется поэтапно при участии ряда ферментов. В энергетическом обмене обычно выделяют три этапа.

Первый этап — подготовительный . На этом этапе сложные высокомолекулярные органические соединения расщепляются ферментативно, путем гидролиза, до более простых соединений — мономеров, из которых они состоят: белки — до аминокислот, углеводы — до моносахаридов (глюкозы), нуклеиновые кислоты — до нуклеотидов и т.д. На данном этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап — бескислородный, или анаэробный. Он называется также анаэробным дыханием (гликолизом) или брожением. Гликолиз происходит в клетках животных. Он характеризуется ступенчатостью, участием более десятка различных ферментов и образованием большого числа промежуточных продуктов. Например, в мышцах в результате анаэробного дыхания шестиуглеродная молекула глюкозы распадается на 2 молекулы пировиноградной кислоты (С3Н403), которые затем восстанавливаются в молочную кислоту (С3Н603). В этом процессе принимают участие фосфорная кислота и АДФ. Суммарное выражение процесса следующее:

С6Н1 206+ 2Н3Р04+ 2АДФ -» 2С3Н603+ 2АТФ + 2Н20.

В ходе расщепления выделяется около 200 кДж энергии. Часть этой энергии (около 80 кДж) расходуется на синтез двух молекул АТФ, благодаря чему 40% энергии сохраняется в виде химической связи в молекуле АТФ. Оставшиеся 120 кДж энергии (более 60 %) рассеиваются в виде теплоты. Процесс этот малоэффективный.

При спиртовом брожении из одной молекулы глюкозы в результате многоступенчатого процесса в конечном счете образуются две молекулы этилового спирта, две молекулы С02

С6Н1206+ 2Н3Р04+ 2АДФ -> 2С2Н5ОН ++ 2С02+ 2АТФ + 2Н20.

В этом процессе выход энергии (АТФ) такой же, как и при гликолизе. Процесс брожения — источник энергии для анаэробных организмов.

Третий этап — кислородный, или аэробное дыхание, или кислородное расщепление . На этой стадии энергетического обмена происходит последующее расщепление образовавшихся на предыдущем этапе органических веществ путем окисления их кислородом воздуха до простых неорганических, являющихся конечными продуктами — СО2и Н20. Кислородное дыхание сопровождается выделением большого количества энергии (около 2600 кДж) и аккумуляцией ее в молекулах АТФ.

В суммарном виде уравнение аэробного дыхания выглядит так:

2С3Н603+ 602+ 36АДФ -» 6С02+ 6Н20 + 36АТФ + 36Н20.

Таким образом, при окислении двух молекул молочной кислоты за счет выделившейся энергии образуется 36 энергоемких молекул АТФ. Следовательно, основную роль в обеспечении клеткиэнергией играет аэробное дыхание.

2.5.3. Фотосинтез и хемосинтез.

Обмен веществ и превращения энергии - свойства живых организмов

Клетку можно уподобить миниатюрной химической фабрике, на которой происходят сотни и тысячи химических реакций.

Обмен веществ - совокупность химических превращений, направленных на сохранение и са­мовоспроизведение биологических систем.

Он включает в себя поступление веществ в организм в процессе питания и дыхания, внутри­клеточный обмен веществ, или метаболизм, а также выделение конечных продуктов обмена.

Обмен веществ неразрывно связан с процессами превращения одних видов энергии в другие. Например, в процессе фотосинтеза световая энергия запасается в виде энергии химических свя­зей сложных органических молекул, а в процессе дыхания она высвобождается и расходуется на синтез новых молекул, механическую и осмотическую работу, рассеивается в виде тепла и т. д.

Протекание химических реакций в живых организмах обеспечивается благодаря биологиче­ским катализаторам белковой природы - ферментам, или энзимам. Как и другие катализаторы, ферменты ускоряют протекание химических реакций в клетке в десятки и сотни тысяч раз, а ино­гда и вообще делают их возможными, но не изменяют при этом ни природы, ни свойств конечно­го продукта (продуктов) реакции и не изменяются сами. Ферменты могут быть как простыми, так и сложными белками, в состав которых, кроме белковой части, входит и небелковая - кофактор (кофермент ). Примерами ферментов являются амилаза слюны, расщепляющая полисахариды при длительном пережевывании, и пепсин, обеспечивающий переваривание белков в желудке.

Ферменты отличаются от катализаторов небелковой природы высокой специфичностью дей­ствия, значительным увеличением с их помощью скорости реакции, а также возможностью ре­гуляции действия за счет изменения условий протекания реакции либо взаимодействия с ними различных веществ. К тому же и условия, в которых протекает ферментный катализ, существен­но отличаются от тех, при которых идет неферментный: оптимальной для функционирования ферментов в организме человека является температура 37°С, давление должно быть близким к ат­мосферному, а рН среды может существенно колебаться. Так, для амилазы необходима щелочная среда, а для пепсина - кислая.

Механизм действия ферментов заключается в снижении энергии активации веществ (субстра­тов), вступающих в реакцию, за счет образования промежуточных фермент-субстратных ком­плексов (рис. 2.42).

Энергетический и пластический обмен, их взаимосвязь

Метаболизм складывается из двух одновременно протекающих в клетке процессов: пластиче­ского и энергетического обменов.

Пластический обмен (анаболизм, ассимиляция) представляет собой совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе пластического обмена синтезируются органические вещества, необходимые клетке. Примером реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК.

Энергетический обмен (катаболизм, диссимиляция) - это совокупность реакций расщепле­ния сложных веществ до более простых. В результате энергетического обмена выделяется энер­гия, запасаемая в виде АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Пластический и энергетический обмены неразрывно связаны, поскольку в процессе пластиче­ского обмена синтезируются органические вещества и для этого необходима энергия АТФ, а в про­цессе энергетического обмена органические вещества расщепляются и высвобождается энергия, которая затем будет израсходована на процессы синтеза.

Энергию организмы получают в процессе питания, а высвобождают ее и переводят в доступную форму в основном в процессе дыхания. По способу питания все организмы делятся на автотрофов и гетеротрофов. Автотрофы способны самостоятельно синтезировать органические вещества из неорганических, а гетеротрофы используют исключительно готовые органические вещества.

Стадии энергетического обмена

Несмотря на всю сложность реакций энергетического обмена, его условно подразделяют на три этапа: подготовительный, анаэробный (бескислородный) и аэробный (кислородный).

На подготовительном этапе молекулы полисахаридов, липидов, белков, нуклеиновых кислот распадаются на более простые, например, глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды и др. Этот этап может протекать непосредственно в клетках либо в кишечнике, от­куда расщепленные вещества доставляются с током крови.

Анаэробный этап энергетического обмена сопровождается дальнейшим расщеплением моно­меров органических соединений до еще более простых промежуточных продуктов, например, пи- ровиноградной кислоты, или пирувата. Он не требует присутствия кислорода, и для многих ор­ганизмов, обитающих в иле болот или в кишечнике человека, является единственным способом получения энергии. Анаэробный этап энергетического обмена протекает в цитоплазме.

Бескислородному расщеплению могут подвергаться различные вещества, однако довольно ча­сто субстратом реакций оказывается глюкоза. Процесс ее бескислородного расщепления называет­ся гликолизом. При гликолизе молекула глюкозы теряет четыре атома водорода, т. е. окисляется, при этом образуются две молекулы пировиноградной кислоты, две молекулы АТФ и две молекулы восстановленного переносчика водорода НАДН + Н + :

С 6 Н 12 0 6 + 2Н 3 Р0 4 + 2АДФ + 2НАД → 2С 3 Н 4 0 3 + 2АТФ + 2НАДН + Н + + 2Н 2 0.

Образование АТФ из АДФ происходит вследствие прямого переноса фосфат-аниона с предва­рительно фосфорилированного сахара и называется субстратным фосфорилированием.

Аэробный этап энергетического обмена может происходить только в присутствии кислорода, при этом промежуточные соединения, образовавшиеся в процессе бескислородного расщепления, окисляются до конечных продуктов (углекислого газа и воды) и выделяется большая часть энер­гии, запасенной в химических связях органических соединений. Она переходит в энергию макро- эргических связей 36 молекул АТФ. Этот этап также называется тканевым дыханием. В случае отсутствия кислорода промежуточные соединения превращаются в другие органические веще­ства, и этот процесс называется брожением.

Дыхание

Механизм клеточного дыхания схематически изображен на рис. 2.43.

Аэробное дыхание происходит в митохондриях, при этом пировиноградная кислота сначала утрачивает один атом углерода, что сопровождается синтезом одного восстановительного эквива­лента НАДН + Н + и молекулы ацетилкофермента А (ацетил-КоА):

С 3 Н 4 0 3 + НАД + Н~КоА →СН 3 СО~КоА + НАДН + Н + + С0 2 .

Ацетил-КоА в матриксе митохондрий вовлекается в цепь хими­ческих реакций, совокупность которых называется циклом Кребса (циклом трикарбоновых кислот, циклом лимонной кислоты). В хо­де этих превращений образуется две молекулы АТФ, ацетил-КоА полностью окисляется до углекислого газа, а его ионы водорода и электроны присоединяются к переносчикам водорода НАДН + Н + и ФАДН 2 . Переносчики транспортируют протоны водорода и элек­троны к внутренним мембранам митохондрий, образующим кристы. При помощи белков-переносчиков протоны водорода нагнетаются в межмембранное пространство, а электроны передаются по так на­зываемой дыхательной цепи ферментов, расположенной на внутрен­ней мембране митохондрий, и сбрасываются на атомы кислорода:

0 2 +2е- →0 2 - .

Следует отметить, что некоторые белки дыхательной цепи содер­жат железо и серу.

Из межмембранного пространства протоны водорода транспор­тируются обратно в матрикс митохондрий с помощью специальных ферментов - АТФ-синтаз, а выделяющаяся при этом энергия рас­ходуется на синтез 34 молекул АТФ из каждой молекулы глюкозы. Этот процесс называется окислительным фосфорилированием. В матриксе митохондрий протоны водорода реагируют с ра­дикалами кислорода с образованием воды:

4Н + + О 2 - →2Н 2 0.

Совокупность реакций кислородного дыхания может быть выражена следующим образом: 2С 3 Н 4 0 3 + 60 2 + 36Н 3 Р0 4 + 36АДФ → 6C0 2 + 38Н 2 0 + 36АТФ.

Суммарное уравнение дыхания выглядит таким образом:

С 6 Н 12 0 6 + 60 2 + 38Н 3 Р0 4 + 38АДФ→ 6С0 2 + 40Н 2 0 + 38АТФ.

Брожение

В отсутствие кислорода или при его недостатке происходит брожение. Брожение является эволюционно более ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку в результате брожения образуются органические вещества, все еще богатые энергией. Различают несколько основных видов брожения: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода в ходе брожения пирови­ноградная кислота восстанавливается до молочной кислоты, при этом образовавшиеся ранее вос­становительные эквиваленты расходуются, и остаются всего две молекулы АТФ:

2С 3 Н 4 0 3 + 2НАДН + Н + → 2С 3 Н 6 0 3 + 2НАД.

При брожении с помощью дрожжевых грибов пировиноградная кислота в присутствии кисло­рода превращается в этиловый спирт и оксид углерода (IV):

С 3 Н 4 0 3 + Н 3 Р0 4 + АДФ + НАДН + Н + →С 2 Н 5 ОН + С0 2 + АТФ + Н 2 0 + НАД + .

При брожении с помощью микроорганизмов из пировиноградной кислоты могут образоваться также уксусная, масляная, муравьиная кислоты и др.

АТФ, полученная в результате энергетического обмена, расходуется в клетке на различные виды работы: химическую, осмотическую, электрическую, механическую и регуляторную. Хими­ческая работа заключается в биосинтезе белков, липидов, углеводов, нуклеиновых кислот и дру­гих жизненно важных соединений. К осмотической работе относят процессы поглощения клеткой и выведения из нее веществ, которые во внеклеточном пространстве находятся в концентраци­ях, больших, чем в самой клетке. Электрическая работа тесно взаимосвязана с осмотической, поскольку именно в результате перемещения заряженных частиц через мембраны формируется заряд мембраны и приобретаются свойства возбудимости и проводимости. Механическая работа сопряжена с движением веществ и структур внутри клетки, а также клетки в целом. К регулятор- ной работе относят все процессы, направленные на координацию процессов в клетке.

Фотосинтез, его значение, космическая роль

Фотосинтезом называют процесс преобразования энергии света в энергию химических связей органических соединений с участием хлорофилла.

В результате фотосинтеза образуется около 150 млрд тонн органического вещества и при­близительно 200 млрд тонн кислорода ежегодно. Этот процесс обеспечивает круговорот углерода в биосфере, не давая накапливаться углекислому газу и препятствуя тем самым возникновению парникового эффекта и перегреву Земли. Образующиеся в результате фотосинтеза органические вещества не расходуются другими организмами полностью, значительная их часть в течение мил­лионов лет образовала залежи полезных ископаемых (каменного и бурого угля, нефти). В послед­нее время в качестве топлива начали использовать также рапсовое масло («биодизель») и спирт, полученный из растительных остатков. Из кислорода под действием электрических разрядов об­разуется озон, который формирует озоновый экран, защищающий все живое на Земле от губи­тельного действия ультрафиолетовых лучей.

Наш соотечественник, выдающийся физиолог растений К. А. Тимирязев (1843-1920) назвал роль фотосинтеза «космической», поскольку он связывает Землю с Солнцем (космосом), обеспечи­вая приток энергии на планету.

Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь

В 1905 году английский физиолог растений Ф. Блэкмен обнаружил, что скорость фотосинтеза не может увеличиваться беспредельно, какой-то фактор ограничивает ее. На основании этого он выдвинул предположение о наличии двух фаз фотосинтеза: световой и темновой. При низкой ин­тенсивности освещения скорость световых реакций возрастает пропорционально нарастанию силы света, и, кроме того, данные реакции не зависят от температуры, поскольку для их протекания не нужны ферменты. Световые реакции протекают на мембранах тилакоид.

Скорость темновых реакций, напротив, возрастает с повышением температуры, однако по достижении температурного порога в 30°С этот рост прекращается, что свидетельствует о фер­ментативном характере указанных превращений, происходящих в строме. Следует отметить, что свет также оказывает на темновые реакции определенное влияние, несмотря на то, что они на­зываются темновыми.

Световая фаза фотосинтеза (рис. 2.44) протекает на мембранах тилакоидов, несущих несколько типов белковых комплексов, основными из которых являются фотосистемы I и II, а также АТФ- синтаза. В состав фотосистем входят пигментные комплексы, в которых, кроме хлорофилла, при­сутствуют и каротиноиды. Каротиноиды улавливают свет в тех областях спектра, в которых этого не делает хлорофилл, а также защищают хлорофилл от разрушения светом высокой интенсивности.

Кроме пигментных комплексов, фотосистемы включают и ряд белков-акцепторов электронов, которые последовательно передают друг другу электроны от молекул хлорифилла. Последователь­ность этих белков называется электронтранспортной цепью хлоропластов.

С фотосистемой II также ассоциирован специальный ком­плекс белков, который обеспечивает выделение кислорода в процессе фотосинтеза. Этот кислородвыделяющий комплекс содержит ионы марганца и хлора.

В световой фазе кванты света, или фотоны, попадающие на молекулы хлорофилла, расположенные на мембранах тилакоидов, переводят их в возбужденное состояние, характеризующе­еся более высокой энергией электронов. При этом возбужден­ные электроны от хлорофилла фотосистемы I передаются через цепь посредников на переносчик водорода НАДФ, присоединя­ющий при этом протоны водорода, всегда имеющиеся в водном растворе:

НАДФ + 2е- + 2Н + → НАДФН + Н + .

Восстановленный НАДФН + Н + будет впоследствии исполь­зован в темновой стадии. Электроны от хлорофилла фотосисте­мы II также передаются по электронтранспортной цепи, однако они заполняют «электронные дырки» хлорофилла фотосистемы I. Недостаток электронов в хло­рофилле фотосистемы II заполняется за счет отнимания у молекул воды, которое происходит с участием уже упоминавшегося выше кислородвыделяющего комплекса. В результате разложе­ния молекул воды, которое называется фотолизом, образуются протоны водорода и выделяется молекулярный кислород, являющийся побочным продуктом фотосинтеза:

Н 2 0 →2Н + +2е- +1/2О 2

Протоны водорода, накопившиеся в полости тилакоида в результате фотолиза воды и нагнета­ния при переносе электронов по электронтранспортной цепи, вытекают из тилакоида через канал в мембранном белке - АТФ-синтазе, при этом из АДФ синтезируется АТФ. Данный процесс на­зывается фотофосфорилированием. Он не требует участия кислорода, однако очень эффективен, так как дает в 30 раз больше АТФ, чем митохондрии в процессе окисления. Образовавшаяся в све­товых реакциях АТФ впоследствии будет использована в темновых реакциях.

Суммарное уравнение реакций световой фазы фотосинтеза можно записать следующим обра­зом:

2Н 2 0 + 2НАДФ + 3АДФ + ЗН 3 Р0 4 → 2НАДФН + Н + + 3АТФ.

В ходе темновых реакций фотосинтеза (рис. 2.45) происходит связывание молекул С0 2 в виде углеводов, на которое расходуются молекулы АТФ и НАДФН + Н + , синтезированные в световых реакциях:

6С0 2 + 12 НАДФН + Н + + 18АТФ→ С 6 Н 12 0 6 + 6Н 2 0 + 12 НАДФ + 18АДФ + 18Н 3 Р0 4 .

Процесс связывания углекислого газа является сложной цепью превращений, названной ци­клом Кальвина в честь его первооткрывателя. Темновые реакции протекают в строме хлоропластов. Для их протекания необходим постоянный приток углекислого газа извне через устьица, а затем и по системе межклетников.

Первыми в процессе фиксации углекислого газа образуются трехуглеродные сахара, являю­щиеся первичными продуктами фотосинтеза, тогда как образующуюся позже глюкозу, которая расходуется на синтез крахмала и другие процессы жизнедея­тельности, называют конечным продуктом фотосинтеза.

Таким образом, в процессе фотосинтеза энергия солнечного света преобразуется в энергию химических связей сложных ор­ганических соединений не без участия хлорофилла. Суммарное уравнение фотосинтеза можно записать следующим образом:

6С0 2 + 12Н 2 0 → С 6 Н 12 0 6 + 60 2 + 6Н 2 0, или

6С0 2 + 6Н 2 0 →С 6 Н 12 0 6 + 60 2 .

Реакции световой и темновой фаз фотосинтеза взаимосвязаны, так как увеличение скорости лишь одной группы реакций влияет на интенсивность всего процесса фотосинтеза только до опре­деленного момента, пока вторая группа реакций не выступит в роли лимитирующего фактора, и возникает потребность в ускорении реакций второй группы для того, чтобы первые происходили без ограничений.

Световая стадия, протекающая в тилакоидах, обеспечивает запасание энергии для образова­ния АТФ и переносчиков водорода. На второй стадии, темновой, энергетические продукты первой стадии используются для восстановления углекислого газа, и происходит это в компартментах стромы хлоропластов.

На скорость фотосинтеза оказывают влияние различные факторы окружающей среды: осве­щенность, концентрация углекислого газа в атмосфере, температура воздуха и почвы, доступ­ность воды и др.

Для характеристики фотосинтеза используется понятие его продуктивности.

Продуктивность фотосинтеза - это масса синтезируемой за 1 час глюкозы на 1 дм 2 листовой поверхности. Этот показатель фотосинтеза максимален при оптимальных условиях.

Фотосинтез присущ не только зеленым растениям, но и многим бактериям, в том числе ци- анобактерям, зеленым и пурпурным бактериям, однако у последних он может иметь некоторые отличия, в частности, при фотосинтезе бактерии могут не выделять кислорода (это не касается цианобактерий).

Хемосинтез. Роль хемосинтезирующих бактерий на Земле

Хемосинтез - это процесс синтеза органических соединений за счет химической энергии не­органических соединений.

Данный процесс был открыт выдающимся русским ученым С.Н. Виноградским в 1887 го­ду. К группе хемосинтетиков (хемотрофов) относятся в основном бактерии: нитрифицирующие, серобактерии, железобактерии и др. Они используют энергию окисления соединений азота, серы, ионов железа соотвественно. При этом донором электронов выступает не вода, а другие неоргани­ческие вещества.

Так, нитрифицирующие бактерии окисляют образованный из атмосферного азота азотфиксирующими бактериями аммиак до нитритов и нитратов:

2NH 3 +30 2 → 2HNO 2 + 2Н 2 0 + 663 кДж,

2HN0 2 + 0 2 →2HN0 3 + 192 кДж.

Серобактерии окисляют сероводород до серы, а в некоторых случаях и до серной кислоты:

H 2 S + 0 2 → 2Н 2 0 + 2S + 272 кДж,

2S + 30 2 + Н 2 0 → H 2 S0 4 + 483 кДж.

Железобактерии окисляют соли железа:

4FeC0 3 + 0 2 + 6Н 2 0 →4Fe(OH) 3 + 4С0 2 + 324 кДж.

Водородные бактерии способны окислять молекулярный водород:

2Н 2 + 0 2 → 2Н 2 0 + 235 кДж.

Источником углерода для синтеза органических соединений у всех автотрофных бактерий вы­ступает углекислый газ.

Хемосинтезирующие бактерии наиболее значительную роль играют в биогеохимических цик­лах химических элементов в биосфере, так как в процессе их жизнедеятельности образовались залежи многих полезных ископаемых. Кроме того, они являются источниками органического ве­щества на планете, т. е. продуцентами, а также делают доступным и для растений, и для других организмов целый ряд неорганических веществ.