Солнечная электроэнергия. Что такое солнечная энергия, и где она используется? Солнечные электростанции солнечно-вакуумного типа

  • 19.10.2019

Солнечная энергия - это свет, тепло и жизнь на нашей планете, а еще солнечная энергия - главный альтернативный источник, который на несколько порядков превышает весь существующий энергетический потенциал Земли, и он в состоянии полностью обеспечить все ее энергетические потребности.

Как Солнце является нескончаемым источником тепла и света (условно), так и энергия солнечного излучения поддерживает жизнь на Земле уже не один миллион лет. Возможность обеспечивать все жизненно важные процессы Солнце имеет благодаря своему составу. В процентном соотношении оно преимущественно состоит из двух элементов: водорода (73%) и гелия (25%). Более подробно об образовании и жизненном цикле Солнца можно прочитать, например, в википедии.

Реакции термоядерного синтеза, которые происходят на Солнце сжигают водород, превращая его в гелий. Колоссальная энергия солнечных лучей, выделяющаяся во время таких процессов, излучается в космос. Кстати, ученые, пытаются повторить эти реакции на земле (реакция управляемого термоядерного синтеза, международный проект ТОКАМАК) .

Все организмы, использующие энергию солнечного света, обеспечивают с ее помощью свои процессы жизнедеятельности - солнечный свет необходим для начальной стадии процесса фотосинтеза. С ее участием происходит синтез таких веществ, как кислород и углеводороды.

Количество водорода на Солнце постепенно уменьшается и рано или поздно придет время, когда его запас на солнце будет исчерпан. Однако, в силу большого количества водорода этого не произойдет, по крайней мере, в ближайшие 5 миллиардов лет.

Каждую секунду в ядре Солнца около 4 миллионов тонн вещества преобразуются в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.

Основной приток энергии Солнца, который доходит до атмосферы Земли находится в спектральном диапазоне 0,1 4 мкм. В диапазоне 0,3 1,5-2 мкм атмосфера Земли почти прозрачна для солнечного излучения. Ультрафиолетовые волны (длина волны короче 0,3 мкм) поглощаются слоем озона, который находится на высотах 20-60 км. Рентгеновское и гамма-излучение до поверхности Земли почти не доходят.

Концентрация солнечной энергии характеризируется величиной 1367 Вт/м 2 , именуемой солнечной постоянной. Именно такой поток проходит через перпендикулярную площадку размером в 1 м 2 , если ее поместить на входе в верхний слой атмосферы Земли. При достижении этим потоком уровня моря, потери энергии уменьшают его до 1000 Вт/м 2 на экваторе. Но смена дня и ночи снижает его еще в 3 раза. Для умеренных широт, с учетом зимнего периода он составляет половину от количественного показателя максимального потока на экваторе.

Усреднённый по времени и по поверхности Земли, этот поток составляет 341 Вт/м 2 . В расчете на полную поверхность, или 1,74х10 17 Вт в расчёте на полную поверхность Земли. Таким образом, в сутки Земля на поверхности получит 4,176х10 15 кВтч энергии, большая часть которой, возвращается в космос в виде излучения.

По данным МЭА на 2015 год, мировое производство энергии составило 19099 Mtoe (эквивалент мегатонны нефти). В пересчёте на привычные киловаттчасы, эта цифра составит 6,07х10 11 кВтч в сутки.

Солнце дает земле энергии в 8 000 раз больше, чем необходимо всему человечеству. Очевидно, что перспективы применения данного вида энергии очень широки. С ее участием развивается ветро-энергетика (ветер возникает из-за разности температур), применяются фотоэлектрические преобразователи и строятся гидроаккумулирующие станции. Имеет место широкое использование солнечных батарей.

Потенциал применения солнечной энергии очень велик.

Преимущества и недостатки использования солнечной энергии

Преимущества использования солнечной энергии привели к тому, что уже сегодня мы видим ее использование в самых разных видах человеческой деятельности.

Главными преимуществами являются:

  • Неисчерпаемость энергии солнца в ближайшие 4 миллиарда лет;
  • Доступность данного вида энергии - именно с ним безопасно и эффективно сегодня работают и фермеры, и хозяева частных домов, и заводы-гиганты;
  • Бесплатность и экологическая чистота вырабатываемой энергии;
  • Перспектива развития данного источника энергии, который становится все более актуальным в силу роста цен на другие виды энергии;
  • Т.к. количество ежегодно вводимого в эксплуатацию оборудования и его надежность растет, уменьшается стоимость вырабатываемого киловатт часа солнечной энергии.

К условным недостаткам солнечной энергии можно отнести:

  • Основным недостатком солнечной энергии является прямая зависимость количества получаемого света и тепла от влияния таких факторов, как погода, время года или же суток. Логическим последствием в таком случае является необходимость аккумулировать энергию, что увеличивает стоимость системы;
  • Для производства элементов оборудования данного предназначения применяются редкие а, следовательно, дорогостоящие элементы.

Перспективы развития солнечной энергетики

Сегодня технологии, в которых используется энергия солнечного света, находят все более широкое применение. Самые распространенные - это солнечные батареи. Фотоэлектрические элементы успешно устанавливаются на различные виды транспорта - начиная от электромобилей и заканчивая самолетами. Японцы практикуют установку их на поезда.

Успешно функционируя, одна из европейских гелиоэлектростанций обеспечивает все потребности Ватикана. Крупнейшая станция в Калифорнии, источником для которой является солнечная энергия (фото дают представления о масштабах), уже сейчас обеспечивает штат своей круглосуточной работой.

Внедрение таких технологий сталкивается с сопротивлением со стороны лидеров углеводородной отрасли - ведь альтернативные источники в энергетике могут в скором времени вытеснить их представителей с лидирующих позиций.

Если говорить о прямом преобразовании, то наибольшее распространение получили такие устройства преобразования солнечной энергии как тепловые трубы (солнечные коллекторы) и батареи солнечных фотоэлементов .

Экономика солнечной установки

При рассмотрении возможности установки солнечной электростанции основное внимание уделяют экологическим, а экономическим аспектам. Звучат они следующим образом:

  1. Какова стоимость солнечной установки?
  2. Каков срок ее окупаемости?
  3. Достаточное ли количество электроэнергии будет генерировать установка?

Целесообразно рассматривать небольшие электростанции мощностью до 50 кВт. Установки большей мощности применяют преимущественно на промышленных объектах.

Достаточное ли количество электроэнергии будет генерировать домашняя солнечная электростанция?

Для ответа на третий вопрос, перед началом проектирования солнечной установки определяет профиль энергопотребления дома. Его можно записать установив на объекте счетчик электроэнергии с функцией сохранения текущих параметров: напряжения сети, потребляемого тока, текущей потребляемой мощности, частоты. Через месяц, вы можете оценить свой профиль потребления со средними, максимальными и минимальными значениями параметров.

Если такой прибор отсутствует, то профиль энергопотребления можно оценить так: потребуется записать все приборы, которые могут использоваться в доме и смоделировать возможные варианты их ежедневного использования. После этого, вооружившись калькулятором, вы сможете рассчитать суточное потребление электричества и пиковые значения мощности.

Существенную роль играет регион, где расположено здание. Энергия, достигающая поверхности Земли, в зависимости от региона, может изменяться от более, чем 5 кВтч/м 2 /день до 1,5 кВтч/м 2 /день и менее.

Если максимальное потребление приходится на светлое время суток, то для обеспечения достаточности генерируемого электричества нужно разделить максимальную потребляемую мощность на мощность одной панели солнечных элементов. Тип и характеристики панелей известны из каталогов производителей. Нужно учитывать, что характеристики солнечных панелей приведены при их максимальной освещенности - поправка на региональный коэффициент обязательна. Зимний период, когда батареи покрыты снегом не учитывается.

Такой расчет не учитывает следующую особенность: В течении дня, установка будет всегда генерировать избыточное количество энергии , а ночью, по понятным причинам, генерация будет равна 0.

Аккумуляторные батареи с одной стороны увеличивают общую стоимость системы, с другой стороны, позволяют уменьшить количество панелей солнечных элементов за счет накопления энергии в периоды меньшего энергопотребления.

Для расчета банка АКБ нужно ответить на следующие вопросы:

  • Предполагается ли система полностью автономной?
  • В случае, если система не автономна, то какой максимальный возможный срок перерывов в электроснабжении.

Максимальное потребление в кВт часах умножается на количество часов без основного источника (нужно учитывать, что в момент отключения солнца может и не быть). На основе этих данных можно рассчитать емкость банка АКБ. Разрядка АКБ до 0 сокращает срок их службы, поэтому в расчете вводят коэффициент показателя максимального разряда, например, он может быть 50, 40 или 30 %. Чем меньше максимальный показатель разряда, тем большее количество АКБ потребуется.

Стоимость установки солнечной генерации

Основные составляющие оборудования системы распределяются по стоимости в следующем процентном соотношении (условно):

  • Инвертор и система управления - 15-40%;
  • Солнечные панели и MPPT контроллеры - 20-40%;
  • Банк АКБ - 30%.

Стоимость солнечных панелей и АКБ будет идентична для систем всех производителей, существенные отличия имеются только в стоимости оборудования инвертора с системой управления и MPPT контроллера.

Разница в цене достигает более 200%, в зависимости от производителя. Это обусловлено не только «брендом», но и возможностями системы, например, удобство в управлении, возможность удаленного доступа, максимальная нагрузка и устойчивость к 2х-3х кратным перегрузкам, возможность частичного отключения нагрузки и т.д.

Каждое конечное техническое решение будет немного отличаться от других из-за того, что все люди используют разную бытовую технику в разное время суток. Идеальной комбинации оборудования, даже на заданную мощность не существует.

В качестве ориентировочной стоимости функциональной солнечной установки в загородный дом с учетом резервирования части мощности можно грубо ориентироваться на цифры 700-1800 USD/кВт в зависимости от производителя оборудования.

Сроки окупаемости установки солнечной генерации

Если хозяева условно выезжают на дачу только на выходные, и при этом в доме отсутствуют потребители, которые работают ежедневно, то, скорее всего, система будет окупаться не менее 10-15 лет, при текущих тарифах на электроэнергию.

При постоянном проживании, сроки окупаемости сократятся до 6-10 лет.

Положительная сторона медали - собственник такого дома получает стабильный источник электроснабжения и не зависит от обрывов ЛЭП или перепада мощностей. Все сидят без света, а вы - со светом, охранные системы функционируют, не нужно вручную открывать гараж и т.п.

Можно предположить, что развитие частного электротранспорта позволит сократить срок окупаемости солнечной установки для домохозяйств. Владелец такого автомобиля будет бесплатно «заправлять» его от собственной крыши .

Срок окупаемости зависит от полноты использования электроэнергии. Если сооружение использует 100% от генерации и при этом подключено к центральной сети электроснабжения, то в общем случае, отсутствует необходимость установки банка АКБ. Расчетный срок полной окупаемости такой установки составит 3-5 лет, а в жарких регионах еще меньше.

Дополнительная выгода образуется из-за того, что днем владелец НЕ ПЛАТИТ по дневному тарифу, а ночью ПЛАТИТ по ночному.

Такими быстро окупаемыми объектами могут быть любые энергозатратные производства с пустой плоской крышей, торгово-развлекательные и спортивные центры и паркинги при них, холодильные комплексы и т.п.

Удивительно, но подобные решения, позволяющие существенно снизить эксплуатационные затраты, до сих пор никак не используется владельцами объектов недвижимости.

В обозримом будущем, с развитием солнечной энергетики, все большее число владельцев зданий станут использовать чистую энергию взамен углеводородного сырья.

Солнечная энергия

Параметры солнечного излучения

Прежде всего необходимо оценить потенциальные энергетические возможности солнечного излучения. Здесь наибольшее значение имеет его общая удельная мощность у поверхности Земли и распределение этой мощности по разным диапазонам излучения.

Мощность солнечного излучения

Мощность излучения Солнца, находящегося в зените, у поверхности Земли оценивается примерно в 1350 Вт/м2. Простой расчёт показывает, что для получения мощности 10 кВт необходимо собрать солнечное излучение с площади всего лишь 7.5 м2. Но это — в ясный полдень в тропической зоне высоко в горах, где атмосфера разрежена и кристально прозрачна. Как только Солнце начинает склоняться к горизонту, путь его лучей сквозь атмосферу увеличивается, соответственно, возрастают и потери на этом пути. Присутствие в атмосфере пыли или паров воды, даже в неощутимых без специальных приборов количествах, ещё более снижает поток энергии. Однако и в средней полосе в летний полдень на каждый квадратный метр, ориентированный перпендикулярно солнечным лучам, приходится поток солнечной энергии мощностью примерно 1 кВт.

Конечно, даже небольшая облачность резко уменьшает энергию, достигающую поверхности, особенно в инфракрасном (тепловом) диапазоне. Тем не менее, часть энергии всё равно проникает сквозь тучи. В средней полосе при сильной облачности в полдень мощность солнечного излучения, дошедшего до поверхности Земли, оценивается примерно в 100 Вт/м2 и лишь в редких случаях при особо плотной облачности может опускаться ниже этой величины. Очевидно, что в таких условиях для получения 10 кВт необходимо полностью, без потерь и отражения, собрать солнечное излучение уже не с 7.5 м2 земной поверхности, а с целой сотки (100 м2).

В таблице приведены краткие усреднённые данные по энергии солнечного излучения для некоторых городов России с учётом климатических условий (частоты и силы облачности) на единицу горизонтальной поверхности. Детализация этих данных, дополнительные данные для ориентаций панелей, отличных от горизонтальной, а также данные для других областей России и стран бывшего СССР приведены на отдельной странице .

Город

месячный минимум
(декабрь)

месячный максимум
(июнь или июль)

суммарно за год

Архангельск

4 МДж / м 2 (1.1 кВт·ч / м 2)

575 МДж / м 2 (159.7 кВт·ч / м 2)

3.06 ГДж / м 2 (850 кВт·ч / м 2)

Астрахань

95.8 МДж / м 2 (26.6 кВт·ч / м 2)

755.6 МДж / м 2 (209.9 кВт·ч / м 2)

4.94 ГДж / м 2 (1371 кВт·ч / м 2)

Владивосток

208.1 МДж / м 2 (57.8 кВт·ч / м 2)

518.0 МДж / м 2 (143.9 кВт·ч / м 2)

4.64 ГДж / м 2 (1289.5 кВт·ч / м 2)

Екатеринбург

46 МДж / м 2 (12.8 кВт·ч / м 2)

615 МДж / м 2 (170.8 кВт·ч / м 2)

3.76 ГДж / м 2 (1045 кВт·ч / м 2)

Москва

42.1 МДж / м 2 (11.7 кВт·ч / м 2)

600.1 МДж / м 2 (166.7 кВт·ч / м 2)

3.67 ГДж / м 2 (1020.7 кВт·ч / м 2)

Новосибирск

638 МДж / м 2 (177.2 кВт·ч / м 2)

4.00 ГДж / м 2 (1110 кВт·ч / м 2)

Омск

56 МДж / м 2 (15.6 кВт·ч / м 2)

640 МДж / м 2 (177.8 кВт·ч / м 2)

4.01 ГДж / м 2 (1113 кВт·ч / м 2)

Петрозаводск

8.6 МДж / м 2 (2.4 кВт·ч / м 2)

601.6 МДж / м 2 (167.1 кВт·ч / м 2)

3.10 ГДж / м 2 (860.0 кВт·ч / м 2)

Петропавловск-Камчатский

83.9 МДж / м 2 (23.3 кВт·ч / м 2)

560.9 МДж / м 2 (155.8 кВт·ч / м 2)

3.95 ГДж / м 2 (1098.4 кВт·ч / м 2)

Ростов-на-Дону

80 МДж / м 2 (22.2 кВт·ч / м 2)

678 МДж / м 2 (188.3 кВт·ч / м 2)

4.60 ГДж / м 2 (1278 кВт·ч / м 2)

Санкт-Петербург

8 МДж / м 2 (2.2 кВт·ч / м 2)

578 МДж / м 2 (160.6 кВт·ч / м 2)

3.02 ГДж / м 2 (840 кВт·ч / м 2)

Сочи

124.9 МДж / м 2 (34.7 кВт·ч / м 2)

744.5 МДж / м 2 (206.8 кВт·ч / м 2)

4.91 ГДж / м 2 (1365.1 кВт·ч / м 2)

Южно-Сахалинск

150.1 МДж / м 2 (41.7 кВт·ч / м 2)

586.1 МДж / м 2 (162.8 кВт·ч / м 2)

4.56 ГДж / м 2 (1267.5 кВт·ч / м 2)

Неподвижная панель, размещённая под оптимальным углом наклона, способна воспринять в 1.2 .. 1.4 раза больше энергии по сравнению с горизонтальной, а если она будет поворачиваться вслед за Солнцем, то прибавка составит 1.4 .. 1.8 раза. В этом можно убедиться, с разбивкой по месяцам для неподвижных панелей, ориентированных на юг под разными углами наклона, и для систем, отслеживающих движение Солнца. Особенности размещения солнечных панелей более подробно обсуждаются ниже .

Прямое и рассеянное солнечное излучение

Различают рассеянное и прямое солнечное излучение. Для эффективного восприятия прямого солнечного излучения панель должна быть ориентирована перпендикулярно потоку солнечного света. Для восприятия рассеянного излучения ориентация не так критична, так как оно достаточно равномерно приходит почти со всего небосвода — именно так освещается земная поверхность в пасмурные дни (по этой причине в пасмурную погоду предметы не имеют чётко оформленной тени, а вертикальные поверхности, такие как столбы и стены домов, практически не отбрасывают видимую тень).

Соотношение прямого и рассеянного излучения сильно зависит от погодных условий в разные сезоны. Например, в Москве зима пасмурная, и в январе доля рассеянного излучения превышает 90% от общей инсоляции. Но даже московским летом рассеянное излучение составляет почти половину от всей солнечной энергии, достигающей земной поверхности. В то же время в солнечном Баку и зимой, и летом доля рассеянного излучения составляет от 19 до 23% общей инсоляции, а около 4/5 солнечного излучения, соответственно, является прямым. Более подробно соотношение рассеянной и полной инсоляции для некоторых городов приведено на отдельной странице .

Распределение энергии в солнечном спектре

Солнечный спектр является практически непрерывным в крайне широком диапазоне частот — от низкочастотного радиоволнового до сверхвысокочастотного рентгеновского и гамма-излучения. Безусловно, трудно одинаково эффективно улавливать столь разные виды излучения (пожалуй, это можно осуществить лишь теоретически с помощью «идеального абсолютно чёрного тела»). Но это и не надо — во-первых, само Солнце в разных частотных диапазонах излучает с различной силой, а во-вторых, не всё, что излучило Солнце, достигает поверхности Земли — отдельные участки спектра в значительной степени поглощаются разными компонентами атмосферы — преимущественно озоновым слоем, парами воды и углекислым газом.

Поэтому нам достаточно определить те диапазоны частот, в которых наблюдается наибольший поток солнечной энергии у поверхности Земли, и использовать именно их. Традиционно солнечное и космическое излучение разделяется не по частоте, а по длине волны (это связано со слишком большими показателями степени для частот этого излучения, что весьма неудобно — видимому свету в герцах соответствует 14-й порядок). Посмотрим же зависимость распределения энергии от длины волны для солнечного излучения.

Диапазоном видимого света считается участок длин волн от 380 нм (глубокий фиолетовый) до 760 нм (глубокий красный). Всё, что имеет меньшую длину волны, обладает более высокой энергией фотонов и подразделяется на ультрафиолетовый, рентгеновский и гамма- диапазоны излучения. Невзирая на высокую энергию фотонов, самих фотонов в этих диапазонах не так уж много, поэтому общий энергетический вклад этого участка спектра весьма мал. Всё, что имеет бóльшую длину волны, обладает меньшей по сравнению с видимым светом энергией фотонов и подразделяется на инфракрасный диапазон (тепловое излучение) и различные участки радиодиапазона. Из графика видно, что в инфракрасном диапазоне Солнце излучает практически столько же энергии, как и в видимом (уровни меньше, зато диапазон шире), а вот в радиочастотном диапазоне энергия излучения очень мала.

Таким образом, с энергетической точки зрения нам достаточно ограничиться видимым и инфракрасным частотными диапазонами, а также ближним ультрафиолетом (где-то до 300 нм, более коротковолновый жёсткий ультрафиолет практически полностью поглощается в так называемом озоновом слое, обеспечивая синтез этого самого озона из атмосферного кислорода). А львиная доля солнечной энергии, достигающей поверхности Земли, сосредоточена в диапазоне длин волн от 300 до 1800 нм.

Ограничения при использовании солнечной энергии

Главные ограничения, связанные с использованием солнечной энергии, вызваны её непостоянством — солнечные установки не работают ночью и малоэффективны в пасмурную погоду. Это очевидно практически всем.

Однако есть и ещё одно обстоятельство, которое особенно актуально для наших довольно северных широт — это сезонные различия в продолжительности дня. Если для тропической и экваториальной зоны длительность дня и ночи слабо зависит от времени года, то уже на широте Москвы самый короткий день меньше самого длинного почти в 2.5 раза! Про приполярные области я уже не говорю... В результате в ясный летний день солнечная установка под Москвой может произвести энергии не меньше, чем на экваторе (солнце пониже, зато день длиннее). Однако зимой, когда потребность в энергии особенно высока, её выработка, наоборот, снизится в несколько раз. Ведь помимо короткого светового дня, лучи низкого зимнего солнца даже в полдень должны проходить гораздо более толстый слой атмосферы и потому теряют на этом пути существенно больше энергии, чем летом, когда солнце стоит высоко и лучи идут сквозь атмосферу почти отвесно (выражение «холодное зимнее солнце» имеет самый прямой физический смысл). Тем не менее, это вовсе не означает, что солнечные установки в средней полосе и даже в гораздо более северных районах совсем бесполезны — хотя зимой от них мало пользы, эато в период длинных дней, как минимум полгода между весенним и осенним равноденствиями, они вполне эффективны.

Особенно интересно применение солнечных установок для приведения в действие всё шире рас-прос-тра-ня-ю-щих-ся, но весьма «прожорливых» кондиционеров. Ведь чем сильнее светит солнце, тем жарче и тем нужнее кондиционер. Но в таких условиях и солнечные установки способны выработать больше энергии, причём эта энергия будет использована кондиционером именно «здесь и сейчас», её не надо аккумулировать и хранить! К тому же совсем необязательно преобразовывать энергию в электрическую форму — абсорбционные тепловые машины используют тепло непосредственно, а это значит, что вместо фотоэлектрических батарей можно использовать солнечные коллекторы , наиболее эффективные как раз в ясную жаркую погоду. Правда, я считаю, что кондиционеры незаменимы лишь в жарких безводных регионах и во влажном тропическом климате, а также в современных городах независимо от их месторасположения. Грамотно спроектированный и построенный загородный дом не только в средней полосе, но и на большей части юга России не нуждается в столь энергетически прожорливом, громоздком, шумном и капризном устройстве.

К сожалению, в условиях городской застройки индивидуальное использование более-менее мощных солнечных установок со сколько-нибудь заметной практической пользой возможно лишь в редких случаях особо удачного стечения обстоятельств. Впрочем, я не считаю городскую квартиру полноценным жильём, поскольку её нормальное функционирование зависит от слишком большого количества факторов, не доступных непосредственному контролю жильцов по чисто техническим причинам, а потому в случае выхода из строя на более-менее длительное время хотя бы одной из систем жизнеобеспечения современного многоквартирного дома условия там не будут приемлемы для жизни (скорее, квартиру в многоэтажке надо рассматривать как своего рода гостиничный номер, который жильцы выкупили в бессрочное пользование или арендуют у муниципалитета). Зато за городом особое внимание к солнечной энергии может быть более чем оправданным даже на маленьком участке в 6 соток.

Особенности размещения солнечных панелей

Выбор оптимальной ориентации солнечных панелей является одним из важнейших вопросов при практическом использовании солнечных установок любого типа. К сожалению, на различных сайтах, посвящённых солнечной энергии, этот аспект рассматривается очень мало, хотя пренебрежение им способно снизить эффективность панелей до неприемлемого уровня.

Дело в том, что угол падения лучей на поверхность сильно влияет на коэффициент отражения, а следовательно, на долю невоспринятой солнечной энергии. Например, для стекла при отклонении угла падения от перпендикуляра к его поверхности до 30° коэффициент отражения практически не меняется и составляет чуть менее 5%, т.е. более 95% падающего излучения проходят внутрь. Далее рост отражения становится заметным, и к 60° доля отражённого излучения увеличивается вдвое — почти до 10%. При угле падения 70° отражается около 20% излучения, а при 80° — 40%. Для большинства других веществ зависимость степени отражения от угла падения имеет примерно тот же характер.

Ещё важнее так называемая эффективная площадь панели, т.е. перекрываемое ею сечение потока излучения. Она равна реальной площади панели, умноженной на синус угла между её плоскостью и направлением потока (или, что то же самое, на косинус угла между перепендикуляром к панели и направлением потока). Поэтому, если панель перпендикулярна потоку, её эффективная площадь равна её реальной площади, если поток отклонился от перпендикуляра на 60° — половине реальной площади, а если поток параллелен панели, её эффективная площадь равна нулю. Таким образом, существенное отклонение потока от перпендикуляра к панели не только увеличивает отражение, но снижает её эффективную площадь, что обуславливает очень заметное падение выработки.

Очевидно, что для наших целей наиболее эффективна постоянная ориентация панели перпендикулярно потоку солнечных лучей. Но это потребует изменения положения панели в двух плоскостях, поскольку положение Солнца на небе зависит не только от времени суток, но и от времени года. Хотя такая система, безусловно, технически возможна, она получается весьма сложной, а потому дорогой и не слишком надёжной.

Однако вспомним, что при углах падения до 30° коэффициент отражения на границе «воздух-стекло» минимален и практически неизменен, а в течении года угол максимального подъёма Солнца над горизонтом отклоняется от среднего положения не более чем на ±23°. Эффективная площадь панели при отклонении от перпендикуляра на 23° также остаётся достаточно большой — не менее 92% от её реальной площади. Поэтому можно ориентироваться на среднегодовую высоту максимального подъёма Солнца и практически без потери эффективности ограничиться вращением лишь в одной плоскости — вокруг полярной оси Земли со скоростью 1 оборот в сутки. Угол наклона оси такого вращения относительно горизонтали равен географической широте места. Например, для Москвы, расположенной на широте 56°, ось такого вращения должна быть наклонена на север на 56° относительно поверхности (или, что то же самое, отклонена от вертикали на 34°). Такое вращение организовать уже гораздо проще, однако для безпрепятственного вращения большой панели нужно немало места. Кроме того, необходимо либо организовать скользящее соединение, позволяющее отводить от постоянно вращающейся панели всю полученную ею энергию, либо ограничиться гибкими коммуникациями с фиксированным соединением, но обеспечить автоматический возврат панели обратно в ночное время, — в противном случае не избежать перекручивания и обрыва отводящих энергию коммуникаций. Оба решения резко повышают сложность и снижают надёжность системы. При возрастании мощности панелей (а значит, их размеров и веса) технические проблемы усложняются в геометрической прогрессии.

В связи со всем вышеизложенным, практически всегда панели индивидуальных солнечных установок монтируются неподвижно, что обеспечивает относительную дешевизну и высочайшую надёжность установки. Однако здесь особенно важным становится выбор угла размещения панели. Рассмотрим эту проблему на примере Москвы .


Оранжевая линия — при отслеживании положения Солнца вращением вокруг полярной оси (т.е. параллельно земной оси); синий — неподвижная горизонтальная панель; зелёный — неподвижная вертикальная панель, ориентированная на юг; красный — неподвижная панель, наклонённая на юг под углом 40° к горизонту.

Посмотрим на диаграммы инсоляции для различных углов установки панелей. Конечно, панель, поворачивающаяся вслед за Солнцем, вне конкуренции (оранжевая линия). Однако даже в длинные летние дни её эффективность превышает эффективность неподвижных горизонтальной (синяя) и наклонённой под оптимальным углом (красная) панелей всего лишь примерно на 30%. Но в эти дни тепла и света и так хватает! А вот в наиболее энергодефицитный период с октября по февраль преимущество поворотной панели над неподвижными минимально и практически неощутимо. Правда, в это время компанию наклонной панели составляет не горизонтальная, а вертикальная панель (зелёная линия). И это не удивительно — низкие лучи зимнего солнца скользят по горизонтальной панели, но хорошо воспринимаются почти перпендикулярной им вертикальной. Поэтому в феврале, ноябре и декабре вертикальная панель по своей эффективности превосходит даже наклонную и почти не отличается от поворотной. В марте и октябре день более длинный, и поворотная панель уже начинает уверенно (хотя и не очень сильно) превосходить любые неподвижные варианты, но эффективность наклонной и вертикальной панелей практически одинакова. И лишь в период длинных дней с апреля по август горизонтальная панель по полученной энергии опережает вертикальную и приближается к наклонной, а в июне даже чуть превосходит её. Летний проигрыш вертикальной панели закономерен — ведь, скажем, день летнего равноденствия длится в Москве более 17 часов, а в передней (рабочей) полусфере вертикальной панели Солнце может находиться не более 12 часов, остальные 5 с лишним часов (почти треть светового дня!) оно находится позади неё. Если же учесть, что при углах падения более 60° доля отражённого от поверхности панели света начинает стремительно расти, а её эффективная площадь сокращается в два раза и более, то время эффективного восприятия солнечного излучения для такой панели не превышает 8 часов — то есть менее 50% от общей продолжительности дня. Именно этим объясняется факт стабилизации производительности вертикальных панелей в течении всего периода длинных дней — с марта по сентябрь. И наконец, несколько особняком стоит январь — в этом месяце производительность панелей всех ориентаций практически одинакова. Дело в том, что этот месяц в Москве очень пасмурный, и более 90% всей солнечной энергии приходится нарассеянное излучение , а для такого излучения ориентация панели не слишком важна (главное, не направить её в землю). Однако несколько солнечных дней, всё же бывающих в январе, снижают выработку горизонтальной панели на 20% по сравнению с остальными.

Какой же угол наклона выбрать? Всё зависит от того, когда именно Вам нужна солнечная энергия. Если Вы хотите пользоваться ею только в тёплый период (скажем, на даче), то стоит выбрать так называемый «оптимальный» угол наклона, перпендикулярный к среднему положению Солнца в период между весенним и осенним равноденствиями. Он примерно на 10° .. 15° меньше географической широты и для Москвы составляет 40° .. 45°. Если же энергия Вам нужна круглогодично, то следует «выжимать» максимум именно в энергодефицитные зимние месяцы, а значит, надо ориентироваться на среднее положение Солнца между осенним и весенним равноденствиями и размещать панели ближе к вертикали — на 5° .. 15° больше географической широты (для Москвы это будет 60° .. 70°). Если же по архитектурным или конструктивным соображениям выдержать такой угол невозможно и надо выбирать между углом наклона в 40° и меньше или вертикальной установкой, следует предпочесть вертикальное положение. При этом «недобор» энергии в длинные летние дни не так критичен — в этот период полно естественного тепла и света, и потребность в выработке энергии обычно не так велика, как зимой и в межсезонье. Естественно, наклон панели должен быть ориентирован на юг, хотя отклонение от этого направления на 10° .. 15° к востоку или к западу мало что меняет и потому вполне допустимо.

Горизонтальное размещение солнечных панелей на всей территории России неэффективно и абсолютно неоправдано. Помимо слишком большого снижения выработки энергии в осенне-зимний период, на горизонтальных панелях интенсивно скапливается пыль, а зимой ещё и снег, и удалить их оттуда можно только с помощью специально организованной уборки (как правило, вручную). Если же наклон панели превышает 60°, то снег на её поверхности задерживается мало и обычно быстро осыпается сам по себе, а тонкий слой пыли хорошо смывается дождями.

Поскольку в последнее время цены на солнечное оборудование снижаются, может оказаться выгодным вместо единого поля солнечных панелей, ориентированного на юг, использовать два с большей суммарной мощностью , ориентированных на смежные (юго-восток и юго-запад) и даже противоположные (восток и запад) стороны света. Это обеспечит более равномерную выработку в солнечные дни и повышенную выработку в пасмурную погоду, при том, что остальное оборудование останется рассчитанным на прежнюю, относительно невысокую мощность, а потому будет более компактным и дешёвым.

И последнее. Стекло, поверхность которого не гладкая, а имеет специальный рельеф, способно гораздо более эффективно воспринимать боковой свет и передавать его на рабочие элементы солнечной панели. Наиболее оптимальным представляется волнообразный рельеф с ориентацией выступов и впадин с севера на юг (для вертикальных панелей — сверху вниз), — своеобразная линейная линза. Рифлёное стекло способно увеличить выработку неподвижной панели на 5% и более.

Традиционные типы установок для использования солнечной энергии

Время от времени появляются сообщения о строительстве очередной солнечной электростанции (СЭС) или опреснительной установки. По всему миру, от Африки до Скандинавии, применяются тепловые солнечные коллекторы и фотоэлектрические солнечные батареи. Эти методы использования солнечной энергии развиваются уже не один десяток лет, им посвящено множество сайтов в Интернете. Поэтому здесь я рассмотрю их в самых общих чертах. Впрочем, один важнейший момент в Интернете практически не освещается — это выбор конкретных параметров при создании индивидуальной системы солнечного энергоснабжения. Между тем этот вопрос не так прост, как кажется на первый взгляд. Пример выбора параметров для системы на солнечных батареях приведён на отдельной странице .

Солнечные батареи

Вообще говоря, под «солнечной батареей» можно понимать любой набор одинаковых модулей, воспринимающих солнечное излучение и объединённых в единое устройство, в том числе чисто тепловых, но традиционно этот термин закрепился именно за панелями фотоэлектрических преобразователей. Поэтому под термином «солнечная батарея» практически всегда подразумевается фотоэлектрическое устройство, непосредственно преобразующие солнечное излучение в электрический ток. Эта технология активно развивается с середины XX века. Огромным стимулом для её развития стало освоение космического пространства, где конкуренцию солнечным батареям по производимой мощности и длительности работы в настоящее время могут составить лишь малогабаритные ядерные источники энергии. За это время эффективность преобразования солнечных батарей возросла с одного-двух процентов до 17% и более в массовых относительно дешёвых моделях и свыше 42% в опытных образцах. Значительно увеличился срок службы и надёжность работы.

Достоинства солнечных батарей

Главное достоинство солнечных батарей — их предельная конструктивная простота и полное отсутствие подвижных деталей. Как следствие этого — небольшой удельный вес и неприхотливость в сочетании с высокой надёжностью, а также максимально простой монтаж и минимальные требования к обслуживанию во время эксплуатации (обычно достаточно лишь удалять с рабочей поверхности грязь по мере её накопления). Представляя собой плоские элементы малой толщины, они вполне успешно размещаются на обращённом к солнцу скате крыши или на стене дома, практически не требуя для себя какого-то дополнительного места и возведения отдельных громоздких конструкций. Единственное условие — ничто не должно затенять их в течении как можно большего времени.

Ещё одно важнейшее достоинство — это то, что энергия вырабатывается сразу в виде электричества — в наиболее универсальной и удобной на сегодняшний день форме.

К сожалению, ничто не вечно — эффективность фотоэлектрических преобразователей падает в течение срока службы. Полупроводниковые пластины, из которых обычно состоят солнечные батареи, со временем деградируют и утрачивают свои свойства, в результате и без того не слишком высокий КПД солнечных батарей становится ещё меньше. Длительное воздействие высоких температур ускоряет этот процесс. Сначала я отмечал это как недостаток фотоэлектрических батарей, тем более, что «севшие» фотоэлементы восстановить невозможно. Однако вряд ли какой-нибудь механический электрогенератор сможет продемонстрировать хотя бы 1% работоспособности всего лишь через 10 лет непрерывной работы — скорее всего он гораздо раньше потребует серьёзного ремонта из-за механического износа если не подшипников, то щёток, — а современные фотопреобразователи способны сохранять свою эффективность десятилетиями. По оптимистичным оценкам, за 25 лет КПД солнечной батареи уменьшается всего на 10%, а значит, если не вмешаются другие факторы, то даже через 100 лет сохранится почти 2/3 от первоначальной эффективности. Впрочем, для массовых коммерческих фотоэлементов на поли- и монокристаллическом кремнии честные изготовители и продавцы приводят несколько другие цифры старения — через 20 лет следует ожидать утраты до 20% эффективности (тогда теоретически через 40 лет эффективность составит 2/3 от первоначальной, сократится вдвое за 60 лет, а через 100 лет останется чуть менее 1/3 от исходной производительности). В общем, нормальный срок службы для современных фотопреобразователей составляет не менее 25 .. 30 лет, так что деградация не так критична, и гораздо важнее вовремя стирать с них пыль...

Если же батареи установить таким образом, чтобы естественное запыление практически отсутствовало либо своевременно смывалось естественными же дождями, то они смогут работать без какого-либо обслуживания в течение многих лет. Возможность столь долгой эксплуатации в необслуживаемом режиме — ещё одно важнейшее преимущество.

Наконец, солнечные батареи способны вырабатывать энергию с рассвета до заката даже в пасмурную погоду, когда тепловые солнечные коллекторы имеют температуру, лишь незначительно отличающуюся от температуры окружающего воздуха. Конечно, по сравнению с ясным солнечным днём их производительность падает во много раз, но лучше хоть что-то, чем совсем ничего! В связи с этим особенно интересны разработки батарей с максимумом преобразования энергии в тех диапазонах, где облака меньше всего поглощают солнечное излучение. Кроме того, при выборе солнечных фотопреобразователей следует обращать внимание на зависимость вырабатываемого ими напряжения от освещённости — она должна быть как можно меньшей (при снижении освещённости в первую очередь должен падать ток, а не напряжение, поскольку иначе для получения хоть какого-то полезного эффекта в пасмурные дни придётся использовать недешёвое дополнительное оборудование, принудительно повышающее напряжение до минимально достаточного для зарядки аккумуляторов и работы инверторов).

Недостатки солнечных батарей

Конечно, и недостатков у солнечных батарей немало. Помимо зависимости от погоды и времени суток, можно отметить следующее.

Невысокий КПД. Тот же солнечный коллектор при правильном выборе формы и материала поверхности способен поглотить почти всё попавшее на него солнечное излучение практически во всём спектре частот, несущих заметную энергию, — от дальнего инфракрасного до ультрафиолетового диапазона. Солнечные батареи же преобразуют энергию избирательно — для рабочего возбуждения атомов требуются определённые энергии фотонов (частоты излучения), поэтому в одних полосах частот преобразование идёт очень эффективно, а другие частотные диапазоны для них бесполезны. Кроме того, энергия уловленных ими фотонов используется квантово — её «излишки», превышающие нужный уровень, идут на вредный в данном случае нагрев материала фотопреобразователя. Во многом именно этим и объясняется их невысокий КПД.
Кстати, неудачно выбрав материал защитного покрытия, можно заметно снизить эффективность работы батареи. Дело усугубляется тем, что обычное стекло довольно хорошо поглощает высокоэнергетическую ультрафиолетовую часть диапазона, а для некоторых типов фотоэлементов весьма актуален именно этот диапазон, — энергия инфракрасных фотонов для них слишком мала.

Чувствительность к высокой температуре. С повышением температуры эффективность работы солнечных батарей, как и почти всех других полупроводниковых приборов, снижается. При температурах выше 100..125°С они вообще могут временно потерять работоспособность, а ещё больший нагрев грозит их необратимым повреждением. К тому же повышенная температура ускоряет деградацию фотоэлементов. Поэтому необходимо принимать все меры для снижения нагрева, неизбежного под палящими прямыми солнечными лучами. Обычно производители ограничивают номинальный диапазон рабочих температур фотоэлементов до +70°..+90°С (имеется в виду нагрев самих элементов, а температура окружающего воздуха, естественно, должна быть гораздо ниже).
Дополнительно осложняет ситуацию то, что чувствительная поверхность довольно хрупких фотоэлементов часто закрывается защитным стеклом или прозрачным пластиком. Если между защитным покровом и поверхностью фотоэлемента останется воздушная прослойка, то образуется своеобразный «парник», усугубляющий перегрев. Правда, увеличив расстояние между защитным стеклом и поверхностью фотоэлемента и соединив сверху и снизу эту полость с атмосферой, можно организовать конвекционный поток воздуха, естественным образом охлаждающий фотоэлементы. Однако на ярком солнце и при высокой температуре наружного воздуха этого может оказаться недостаточно, к тому же такой метод способствует ускоренному запылению рабочей поверхности фотоэлементов. Поэтому солнечная батарея даже не очень больших размеров может потребовать специальной системы охлаждения. Справедливости ради надо сказать, что подобные системы обычно легко автоматизируются, а привод вентилятора или помпы потребляет лишь малую долю вырабатываемой энергии. При отсутствии яркого солнца большого нагрева нет и охлаждение вообще не требуется, так что энергия, сэкономленная на приводе системы охлаждения, может быть использована для других целей. Следует заметить, что в современных панелях заводского изготовления защитное покрытие обычно плотно прилегает к поверхности фотоэлементов и отводит тепло наружу, но в самодельных конструкциях механический контакт с защитным стеклом может привести к повреждению фотоэлемента.

Чувствительность к неравномерности засветки. Как правило, для получения на выходе батареи напряжения, более-менее удобного для использования (12, 24 и более вольт), фотоэлементы соединяются в последовательные цепочки. Ток в каждой такой цепочке, а следовательно, и её мощность, определяется самым слабым звеном — фотоэлементом с худшими характеристиками или с наименьшей освещённостью. Поэтому если хотя бы один элемент цепочки оказывается в тени, он существенно снижает выработку всей цепочки — потери несоразмерны затенению (более того, при отсутствии защитных диодов такой элемент начнёт рассеивать мощность, вырабатываемую остальными элементами!). Избежать непропорционального снижения выработки можно, лишь соединив все фотоэлементы параллельно, однако тогда на выходе батареи будет слишком большой ток при слишком малом напряжении — обычно для отдельных фотоэлементов оно составляет всего 0.5 .. 0.7 В в зависимости от их типа и величины нагрузки.

Чувствительность к загрязнениям. Даже малозаметный слой грязи на поверхности фотоэлементов или защитного стекла может поглотить существенную долю солнечного света и заметно снизить выработку энергии. В пыльном городе это потребует частой очистки поверхности солнечных батарей, особенно установленных горизонтально или с небольшим наклоном. Безусловно, такая же процедура необходима и после каждого снегопада, и после пыльной бури... Однако вдали от городов, промышленных зон, оживлённых дорог и других сильных источников пыли при угле наклона 45° и более дожди вполне способны смывать естественное запыление с поверхности панелей, «автоматически» поддерживая их в достаточно чистом состоянии. Да и снег на таком уклоне, к тому же обращённом на юг, даже в весьма морозные дни обычно долго не задерживается. Так что вдали от источников атмосферных загрязнений панели солнечных батарей могут годами успешно работать вообще без какого-либо обслуживания, было бы солнце в небе!

Наконец, последнее, но важнейшее из препятствий для широкого и повсеместного распространения фотоэлектрических солнечных батарей — их довольно высокая цена. Себестоимость элементов солнечной батареи в настоящее время составляет минимум 1$/Вт (1 кВт —1000$), и это для малоэффективных модификаций без учёта стоимости сборки и монтажа панелей, а также без учёта цены аккумуляторов, контроллеров зарядки и инверторов (преобразователей вырабатываемого низковольтного постоянного тока к бытовому или промышленному стандарту). В большинстве случаев для минимальной оценки реальных затрат эти цифры следует умножить в 3-5 раз при самостоятельной сборке из отдельных фотоэлементов и в 6-10 раз при покупке готовых комплектов оборудования (плюс стоимость монтажа).

Из всех элементов системы энергоснабжения на фотоэлектрических батареях самый короткий срок службы имеют аккумуляторы, однако производители современных необслуживаемых аккумуляторов утверждают, что в так называемом буферном режиме они проработают порядка 10 лет (или отработают традиционные 1000 циклов сильной зарядки-разрядки — если считать по одному циклу в сутки, то в таком режиме их хватит на 3 года). Отмечу, что стоимость аккумуляторов обычно составляет лишь 10-20% от общей стоимости всей системы, а стоимость инверторов и контроллеров заряда (и то, и другое — сложные электронные изделия, и потому существует некоторая вероятность их выхода из строя) — ещё меньше. Таким образом, принимая во внимание длительный срок службы и возможность работы в течении долгого времени без какого-либо обслуживания, фотопреобразователи за свою жизнь вполне могут окупиться не один раз, и не только в отдалённых районах, но и в обжитых местностях — если тарифы на электричество продолжат расти нынешними темпами!

Солнечные тепловые коллекторы

Название «солнечные коллекторы» закрепилось за устройствами, использующими непосредственный нагрев солнечным теплом, — как одиночными, так и наращиваемыми (модульными). Простейший образец теплового солнечного коллектора — чёрный водяной бак на крыше вышеупомянутого дачного душа (кстати, эффективность нагрева воды в летнем душе можно заметно повысить, соорудив вокруг бака мини-парничок хотя бы из полиэтиленовой плёнки; желательно, чтобы между плёнкой и стенками бака сверху и сбоку оставался зазор в 4-5 см).

Однако современные коллекторы мало похожи на такой бак. Обычно они представляют собой плоские конструкции из тонких зачернённых трубок, уложенных в виде решётки или змейкой. Трубки могут крепиться на зачернённом же теплопроводящем листе-подложке, который улавливает солнечное тепло, попадающее в промежутки между ними — это позволяет уменьшить общую длину трубок без потери эффективности. Для снижения теплопотерь и повышения нагрева коллектор сверху может быть закрыт листом стекла или прозрачного сотового поликарбоната, а с обратной стороны теплораспределяющего листа бесполезные потери тепла предотвращает слой теплоизоляции — получается своеобразная «теплица». По трубке движется нагреваемая вода или другой теплоноситель, который может собираться в накопительном термоизолированном баке. Движение теплоносителя происходит под действием насоса или самотёком за счёт разности плотностей теплоносителя до и после теплового коллектора. В последнем случае для более-менее эффективной циркуляции требуется тщательный выбор уклонов и сечений труб и размещение самого коллектора как можно ниже. Но обычно коллектор размещается в тех же местах, где и солнечная батарея — на солнечной стене или на солнечном склоне крыши, правда дополнительно где-то надо разместить и накопительный бак. Без такого бака при интенсивном разборе тепла (скажем, если надо наполнить ванну или принять душ) ёмкости коллектора может не хватить, и через небольшое время из крана потечёт чуть подогретая водичка.

Защитное стекло, конечно, несколько снижает эффективность коллектора, поглощая и отражая несколько процентов солнечной энергии, даже если лучи падают перпендикулярно. Когда же лучи попадают на стекло под небольшим углом к поверхности, коэффициент отражения может приближаться к 100%. Поэтому при отсутствии ветра и необходимости лишь небольшого нагрева относительно окружающего воздуха (на 5-10 градусов, скажем, для полива огорода) «открытые» конструкции могут быть более эффективны, чем «остеклённые». Но как только требуется разность температур в несколько десятков градусов или если поднимается даже не очень сильный ветер, теплопотери открытых конструкций стремительно возрастают, и защитное стекло при всех своих недостатках становится необходимостью.

Важное замечание — необходимо учитывать, что в жаркий солнечный день при отсутствии разбора вода может перегреться выше температуры кипения, поэтому в конструкции коллектора необходимо принять соответствующие меры предосторожности (предусмотреть предохранительный клапан). В открытых коллекторах без защитного стекла такого перегрева обычно можно не опасаться.

В последнее время начинают широко использоваться солнечные коллекторы на так называемых тепловых трубках (не путать с «тепловыми трубками», применяемыми для отвода тепла в системах охлаждения компьютеров!). В отличие от рассмотренной выше конструкции, здесь каждая нагреваемая металлическая трубка, по которой циркулирует теплоноситель, впаяна внутрь стеклянной трубки, а из промежутка между ними откачан воздух. Получается аналог термоса, где за счёт вакуумной теплоизоляции теплопотери уменьшаются в 20 раз и более. В результате, по утверждению производителей, при морозе в -35°С снаружи стекла, вода во внутренней металлической трубке со специальным покрытием, поглощающим максимально широкий спектр солнечного излучения, нагревается до +50..+70°С (перепад более 100°С).Эффективное поглощение в сочетании с отличной теплоизоляцией позволяют нагревать теплоноситель даже в пасмурную погоду, хотя мощность нагрева, конечно, в разы меньше, чем при ярком солнце. Ключевым моментом здесь является обеспечение сохранности вакуума в зазоре между трубками, то есть вакуумной герметичности стыка стекла и металла, в очень широком диапазоне температур, достигающем 150°С, в течение всего срока эксплуатации, составляющего многие годы. По этой причине при изготовлении таких коллекторов не обойтись без тщательного согласования коэффициентов температурного расширения стекла и металла и высокотехнологичных производственных процессов, а значит, в кустарных условиях вряд ли удастся сделать полноценную вакуумную тепловую трубку. Но более простые конструкции коллекторов без проблем изготавливаются самостоятельно, хотя, конечно, их эффективность несколько меньше, особенно зимой.

Помимо описанных выше жидкостных солнечных коллекторов, существуют и другие интересные типы конструкций: воздушные (теплоноситель — воздух, и замерзание ему не страшно), «солнечные пруды» и пр. К сожалению, большинство исследований и разработок по солнечным коллекторам посвящено именно жидкостным моделям, поэтому альтернативные виды серийно практически не производятся и сведений о них не так уж много.

Достоинства солнечных коллекторов

Важнейшее достоинство солнечных коллекторов — простота и относительная дешевизна изготовления их вполне эффективных вариантов, сочетающаяся с неприхотливостью в эксплуатации. Необходимый минимум для того, чтобы сделать коллектор своими руками — это несколько метров тонкой трубы (желательно медной тонкостенной — её можно согнуть с минимальным радиусом) и немного чёрной краски, хотя бы битумного лака. Сгибаем трубку змейкой, красим чёрной краской, размещаем в солнечном месте, подключаем к водяной магистрали, — и вот простейший солнечный коллектор уже готов! При этом змеевику легко можно придать почти любую конфигурацию и максимально использовать всё выделенное для коллектора место. Наиболее эффективным зачернением, которое можно нанести в кустарных условиях и которое к тому же очень устойчиво к высоким температурам и прямому солнечному свету, является тонкий слой сажи. Однако сажа легко стирается и смывается, потому для такого зачернения обязательно потребуется защитное стекло и специальные меры, чтобы предотвратить возможное попадание конденсата на покрытую сажей поверхность.

Другое важнейшее достоинство коллекторов заключается в том, что в отличии от солнечных батарей, они способны уловить и преобразовать в тепло до 90% попавшего на них солнечного излучения, а в самых удачных случаях — и более. Поэтому не только в ясную погоду, но и при лёгкой облачности КПД коллекторов превосходит КПД фотоэлектрических батарей. Наконец, в отличие от фотоэлектрических батарей, неравномерность засветки поверхности не вызывает непропорционального снижения эффективности коллектора — важен лишь общий (интегральный) поток излучения.

Недостатки солнечных коллекторов

Зато солнечные коллекторы более чувствительны к погоде, чем солнечные батареи. Даже на ярком солнце свежий ветер способен во много раз снизить эффективность нагрева открытого теплообменника. Защитное стекло, конечно, резко сокращает потери тепла от ветра, но в случае плотной облачности и оно бессильно. В пасмурную ветреную погоду толку от коллектора практически нет, а солнечная батарея хоть немного энергии, да вырабатывает.

Среди других недостатков солнечных коллекторов прежде всего выделю их сезонность. Достаточно коротких весенних или осенних ночных заморозков, чтобы образовавшийся в трубах нагревателя лёд создал опасность их разрыва. Конечно, это можно исключить, подогревая холодными ночами «тепличку» со змеевиком сторонним источником тепла, однако в таком случае общая энергетическая эффективность коллектора легко может стать отрицательной! Другой вариант — двухконтурный коллектор с антифризом во внешнем контуре — не потребует расхода энергии на подогрев, но будет намного сложнее одноконтурных вариантов с прямым нагревом воды как в изготовлении, так и при эксплуатации. Воздушные конструкции в принципе не могут замёрзнуть, но там есть другая проблема — низкая удельная теплоёмкость воздуха.

И всё же, пожалуй, главный недостаток солнечного коллектора заключается в том, что он является именно нагревательным прибором, причём хотя промышленно изготовленные образцы при отсутствии разбора тепла могут нагреть теплоноситель до 190..200°С, обычно достигаемая температура редко превышает 60..80°С. Поэтому использовать добытое тепло для получения существенных объёмов механической работы или электрической энергии весьма затруднительно. Ведь даже для работы самой низкотемпературной паро-водяной турбины (например той, которую в своё время описал В.А.Зысин) необходимо перегреть воду хотя бы до 110°С! А непосредственно в виде тепла энергия, как известно, долго не хранится, да и при температуре менее 100°С её обычно можно использовать лишь в горячем водоснабжении и отоплении дома. Впрочем, с учётом низкой стоимости и простоты изготовления это может быть вполне достаточной причиной для обзаведения собственным солнечным коллектором.

Справедливости ради нужно отметить, что «нормальный» рабочий цикл тепловой машины можно организовать и при температурах ниже 100°С — либо если температуру кипения понизить, снижая давление в испарительной части с помощью откачки оттуда пара, либо использовав жидкость, температура кипения которой лежит между температурой нагрева солнечного коллектора и температурой окружающего воздуха (оптимально — 50..60°С). Правда, я могу вспомнить лишь одну не экзотическую и относительно безопасную жидкость, более-менее удовлетворяющую этим условиям — это этиловый спирт, в нормальных условиях кипящий при 78°С. Очевидно, что в таком случае обязательно придётся организовывать замкнутый цикл, решая множество связанных с этим проблем. В некоторых ситуациях перспективным может быть применение двигателей с внешним нагревом (двигателей Стирлинга). Интересным в этом плане может быть и использование сплавов с эффектом памяти формы, о которых на этом сайте рассказано в статье И.В.Найгеля — им для работы достаточно температурного перепада всего в25-30°С.

Концентрация солнечной энергии

Повышение эффективности солнечного коллектора прежде всего заключается в устойчивом повышении температуры нагреваемой воды выше температуры кипения. Для этого обычно применяется концентрация солнечной энергии на коллекторе с помощью зеркал. Именно такой принцип лежит в основе большинства солнечных электростанций, различия заключаются лишь в количестве, конфигурации и размещении зеркал и коллектора, а также в методах управления зеркалами. В результате в точке фокусировки вполне возможно достижение температуры даже не в сотни, а в тысячи градусов, — при такой температуре уже может происходить прямое термическое разложение воды на водород и кислород (полученный водород можно сжигать ночью и в пасмурные дни)!

К сожалению, эффективная работа подобной установки невозможна без сложной системы управления зеркалами-концентраторами, которые должны отслеживать постоянно изменяющееся положение Солнца на небе. В противном случае уже через несколько минут точка фокусировки покинет коллектор, который в таких системах часто имеет весьма небольшие размеры, и нагрев рабочего тела прекратится. Даже использование зеркал-параболоидов решает проблему лишь частично — если их периодически не доворачивать вслед за Солнцем, то через несколько часов оно уже не будет попадать в их чашу или станет освещать лишь её край — толку от этого будет немного.

Самый простой способ концентрации солнечной энергии в «домашних» условиях — это горизонтально положить зеркало возле коллектора так, чтобы большую часть дня «солнечный зайчик» попадал на коллектор. Интересный вариант — использовать в качестве такого зеркала поверхность специально созданного возле дома водоёма, особенно если это будет не обычный водоём, а «солнечный пруд» (хотя сделать это непросто, а эффективность отражения будет гораздо меньше, чем у обычного зеркала). Хороший результат может дать создание системы вертикальных зеркал-концентраторов (эта затея обычно гораздо более хлопотная, но в некоторых случаях вполне оправданной может оказаться простая установка большого зеркала на соседней стене, если она образует с коллектором внутренний угол, — всё зависит от конфигурации и местоположения здания и коллектора).

Перенаправление солнечного излучения с помощью зеркал может повысить и выработку фотоэлектрической батареи. Но при этом возрастает её нагрев, а он может вывести батарею из строя. Поэтому в данном случае приходится ограничиваться относительно небольшим выигрышем (на несколько десятков процентов, но не в разы), и нужно тщательно контролировать температуру батареи, особенно в жаркие ясные дни! Именно из-за опасности перегрева некоторые производители фотоэлектрических батарей прямо запрещают эксплуатацию своих изделий при повышеной освещённости, созданной с помощью дополнительных отражателей.

Преобразование солнечной энергии в механическую

Традиционные типы солнечных установок не подразумевают непосредственного получения механической работы. К солнечной батарее на фотопреобразователях для этого надо подключить электродвигатель, а при использовании теплового солнечного коллектора перегретый пар (а для перегрева вряд ли удастся обойтись без зеркал-концентраторов) надо подать на вход паровой турбины или в цилиндры паровой машины. Коллекторы с относительно небольшим нагревом могут преобразовывать тепло в механическое движение более экзотическими способами, например с помощью актуаторов из сплавов с эффектом памяти формы .

Тем не менее, существуют и установки, предполагающее преобразование солнечного тепла в механическую работу, непосредственно заложенное в их конструкцию. Причём размеры и мощность их самые разные — это и проект огромной солнечной башни высотой в сотни метров, и скромный солнечный насос, которому самое место на дачном участке.

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Солнечное излучение поглощается поверхностью суши, океанами (покрывают около 71 % поверхности земного шара) и атмосферой. Абсорбция солнечной энергии через атмосферную конвекцию , испарение и конденсация водяного пара является движущей силой круговорота воды и управляет ветрами. Солнечные лучи абсорбоване океаном и сушей поддерживает среднюю температуру на поверхности Земли, что ныне составляет 14 °C . Благодаря фотосинтезу растений солнечная энергия может превращаться в химическую, которая хранится в виде пищи, древесины и биомассы, которая в конце концов превращается в ископаемое топливо .

Видео по теме

Перспективы использования

Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.

Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 эксаджоулей (ЭДж) в год . За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год . Фотосинтез забирает около 3 000 ЭДж в год на производство биомассы . Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд .

""Годовое поступление солнечного излучения и потребления энергии человеком"" 1
Солнце 3 850 000
ветер 2 250
Потенциал биомассы ~200
Мировое потребление энергии 2 539
Электроэнергия 2 ~67
1 Энергию подано в эксаджоулях 1 ЭДж = 10 18 Дж = 278 ТВт/ч
2 Потребления по состоянию на 2010 год

Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.

Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтації , которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.

Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши .

Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.

Активные солнечные технологии используют фотовольтаику, концентрированную солнечную энергию (англ. ) , солнечные коллекторы , насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии .

Годовой потенциал солнечной энергии по регионам (ЭДж)
Регион Северная Америка Латинская Америка и Карибы Западная Европа Центральная и Восточная Европа Страны бывшего Советского Союза Ближний Восток и Северная Африка Sub-Saharan Африка Pacific Asia Южная Азия Centrally planned Asia Pacific OECD
Минимум 181,1 112,6 25,1 4,5 199,3 412,4 371,9 41,0 38,8 115,5 72,6
Максимум 7 410 3 385 914 154 8 655 11 060 9 528 994 1 339 4 135 2 263

В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.

Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.

Тепловая энергия

Технологии, которые используют тепловую энергию солнца, можно применять для нагрева воды, обогрева помещений, охлаждения помещений и генерации технологической теплоты .

По состоянию на 2007 год общая установленная мощность солнечных систем для нагрева воды составляла примерно 154 тепловых ГВт. Китай является мировым лидером в этой области, установив по состоянию на 2006 год 70 ГВт тепловых и планируя к 2020 году достичь 210 ГВт тепловых . Израиль и Кипр являются мировыми лидерами по использованию солнечных систем для подогрева воды на душу населения с 90 % домохозяйств, которые их установили . В США, Канаде и Австралии солнечные водоподогреватели служат преимущественно для подогрева плавательных бассейнов, с установленной мощностью состоянию на 2005 год около 18 ГВт тепловых .

Обогрев, охлаждение и вентиляция

Приготовление еды

Солнечные печи используют солнечный свет для приготовления пищи, сушки и пастеризации . Их можно разделить на три широких категории: коробчасті печи (англ. box cookers ), панельные печи (англ. panel cookers ) и отражательные печи (англ. reflector cookers ) . Простейшая солнечная печь - коробчаста, которую впервые построил Орас Бенедикт де Соссюр 1767 года . Простая коробчаста печь состоит из изолированного контейнера с прозрачной крышкой. Она может эффективно применяться при частично закрытом облаками небе и обычно достигает температуры 90-150 °C . Панельная печь использует отражающую панель, чтобы направить солнечные лучи на изолированный контейнер и достичь температуры, сравнимой с коробчастою печью. Отражательные печи используют различную геометрию отражателя (тарелку, корыто, зеркала Френеля), чтобы сфокусировать лучи на контейнер. Эти печи достигают температуры 315 °C, но требуют прямого луча и их нужно переставлять вместе с изменением положения Солнца .

Технологическое тепло

Обработка воды

Солнечное опреснение можно использовать, чтобы превратить соленую или солоноватую воду на питьевую. Впервые пример такого преобразования зафиксировали арабские алхимики XVI века . Впервые масштабный проект из солнечного опреснения построили в 1872 году в чилийском шахтерском городке Лас-Салинас . Завод, который имел площадь солнечного коллектора 4700 м2 мог производить до 22 700 л питьевой воды и оставался в работе на протяжении 40 лет . Individual still designs include single-slope, double-slope (greenhouse or type), vertical, conical, inverted absorber, multi-wick, and multiple effect. . Эти опреснители могут работать в пассивном, активном и гибридном режимах. Double-slope казани наиболее экономически выгодные для децентрализованных бытовых нужд, тогда как active multiple effect units более подходят для широкомасштабных проектов .

Солнечную энергию можно использовать в ставках-усереднювачах для обработки сточных вод без применения химикатов и затраты электроэнергии. Еще одним преимуществом для окружающей среды является то, что водоросли живут в таких прудах и потребляют диоксид углерода в процессе фотосинтеза, хотя они могут вырабатывать токсичные вещества, которые делают воду непригодной для употребления .

Производство электроэнергии

Солнечная энергетика работает за счет преобразования солнечного света в электроэнергию . Это может происходить или непосредственно, с использованием фотовольтаики , или косвенно, с использованием систем концентрированной солнечной энергии (англ. ) , в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект .

Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно .

Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS (англ. ) в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (англ. ) (150 МВт) и СЭС Андасол (англ. ) (100 МВт), обе в Испании. Среди крупнейших электростанций на фотовольтаїці (англ. ) : Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии . Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на фотовольтаїці, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах.По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети .

Архитектура и городское планирование

Наличие солнечного света влияла на дизайн зданий от самого начала истории архитектуры . Впервые продвинутые методы солнечной архитектуры и городского планирования ввели древние греки и китайцы, которые ориентировали свои дома на юг, чтобы обеспечить их освещением и теплом .

Сельское хозяйство и растениеводство

См. также

Примечания

  1. Smil (1991), p. 240
  2. Радиационный и световой режим
  3. Natural Forcing of the Climate System . Intergovernmental Panel on Climate Change. Проверено 29 сентября 2007.
  4. Сомервилл, Richard. Historical Overview of Climate Change Science (PDF). Intergovernmental Panel on Climate Change. Проверено 29 сентября 2007.
  5. Vermass, Wim. An Introduction to Photosynthesis and Its Applications . Arizona State University. Проверено 29 сентября 2007.
  6. Smil (2006), p. 12
  7. http://www.nature.com/nature/journal/v443/n7107/full/443019a.html
  8. Powering the Planet: Chemical challenges in solar energy utilization (PDF). Проверено 7 августа 2008.
  9. Energy conversion by organisms photosynthetic . Food and Agriculture Organization of the United Nations. Проверено 25 мая 2008.
  10. Exergy Flow Charts - GCEP . stanford.edu .
  11. Archer, Cristina. Evaluation of Global Wind Power . Stanford. Проверено 3 июня 2008.
  12. . Renewable and Appropriate Energy Laboratory. Проверено 6 декабря 2012.
  13. Total Primary Energy Consumption . Energy Information Administration . Проверено 30 июня 2013.
  14. Total Electricity Consumption Net . Energy Information Administration . Проверено 30 июня 2013.
  15. Energy and the challenge of sustainability (PDF). UN Development Programme and World Energy Council (September 2000). Проверено 17 января 2017.
Подробности Опубликовано 08.07.2015 15:28

Что принято называть солнечной энергией? Это энергия, производимая солнцем в виде света и тепла. Кроме того, существуют вторичные виды солнечной энергии, такие как энергия ветра и волн. Все названые виды энергии составляют большую часть возобновляемой энергии Земли.

Земля получает 174 петаватт (PW) солнечной радиации в верхних слоях атмосферы. 30% отражается обратно в космос, а остальная часть поглощается облаками, океанами и сушей. Поверхность земли, океаны и атмосфера поглощают солнечное излучение , что повышает их температуру. Теплый воздух, содержащий воду из океанов, поднимается вверх, вызывая конвекцию. Когда воздух достигает большой высоты, где температура низкая, водяной пар конденсируется в облака и вызывает дождь. Скрытая теплота конденсации воды увеличивает конвекцию, производя ветер. Энергия поглощается океанами и сушей, сохраняя поверхность при средней температуре около 14 C.

Зеленые растения преобразовывают солнечную энергию в химическую энергию посредством фотосинтеза. Производство наших продовольственных товаров полностью зависит от солнечной энергии. После своей жизни растения умирают и распадаются в Земле, так солнечная энергия обеспечивает биомассу, которая создала ископаемые виды топлива, которые мы знаем.


Способы использования солнечной энергии

Люди используют солнечную энергию в самых разных формах: для отопления и охлаждения помещений, производства питьевой воды дистилляции, дезинфекции, освещения, производства горячей воды и приготовления пищи. Способы использования солнечной энергии ограничены только человеческой изобретательностью.

Солнечные технологии бывают пассивными или активными, в зависимости от способа захвата энергии, которая затем преобразуется, и распространятся.

Активные солнечные технологии

К активным солнечным технологиям относят фотоэлектрические панели и солнечные тепловые коллекторы.

Пассивные солнечные технологии

Пассивные методы включают ориентацию здание к Солнцу, чтобы получать максимальное количество дневного света и тепла, а также выбор материалов с нужными тепловыми свойствами.


Наша нынешняя зависимость от ископаемого топлива медленно заменяется альтернативными источниками энергии. Некоторые виды топлива, в конечном итоге могут стать бесполезным, но солнечная энергия никогда не устареет, не будет контролироваться иностранными державами, и не закончится. Солнце использует собственные запасы водорода, оно будет производить полезную энергию, пока не взорвется. Задачей, стоящей перед людьми, является захват этой энергии, пока что самым простым способом это сделать, остается использование ископаемого топлива.