Доля солнечной энергии. Перспективы солнечной энергетики

  • 19.10.2019

Солнечная энергия – это энергия, которая вырабатывается на солнце в виде тепла и света. Это один из самых возобновляемых и легкодоступных источников энергии. То, что солнечный свет и тепло доступны бесплатно, в большом количестве и не принадлежат никому, делает их одним из наиболее важных альтернативных источников энергии. Солнечная энергия использовалась людьми с древних времен – согласно легенде, великий греческий ученый Архимед использовал систему зеркал для того, чтобы сжечь неприятельский флот, осадивший Сиракузы.

Световую энергию можно использовать для преобразования в тепловую или электрическую энергию. При помощи солнечного фотоэлектрического элемента солнечное излучение преобразуется в постоянный ток, который используется для питания часов, калькуляторов или светофоров. Тепловую солнечную энергию можно использовать для питания различных устройств.

Пассивные и активные солнечные системы

В общем, в зависимости от того, как солнечная энергия собирается и используется, системы с использованием солнечной энергии можно разделить на активные и пассивные. В активных солнечных системах для преобразования солнечной энергии в тепловую используется механическое и электрическое оборудование, такое как фотоэлементы, солнечные тепловые коллекторы, насосы и вентиляторы. В пассивных солнечных системах механического оборудования нет, для преобразования солнечной энергии в тепловую энергию используются окна, стены, деревья, сама ориентация здания и другие простые методы направления и захвата солнечного света и тепла. Пассивное солнечное отопление – это отличный способ сохранения энергии и максимизации ее использования. Автомобиль в жаркий летний день является примером пассивного солнечного отопления.

Воздействие на окружающую среду

Несмотря на то, что солнечная энергия является возобновляемым ресурсом и считается одним из самых чистых источником энергии среди доступных, она все же воздействует на окружающую среду. Для получения электричества из солнечной энергии используются фотоэлементы, в которых применяется кремний, чье изготовление сопряжено с производством отходов . Неправильное управление этими материалами может привести к возникновению риска опасного воздействия на человека и окружающую среду. Для установки солнечных электростанций может потребоваться большой участок, а экранирование поверхности земли может повлиять на существующие экосистемы. Однако при преобразовании в электричество солнечная энергия не загрязняет воздух, а сама солнечная энергия на землю поступает в изобилии, особенно в жарких странах.

Будущее солнечной энергии

В будущем, благодаря новым разработкам, которые должны привести к снижению затрат и повышению эффективности, солнечные технологии будут иметь гораздо большее значение, нежели сейчас. Все больше и больше появляется зарядных устройств на солнечных батареях для мобильной техники, что на самом деле очень удобно. По всему миру все больше и больше архитекторов при строительстве используют активные и пассивные солнечные системы и учатся включить их в строительные конструкции. В некоторых местностях, с экономической точки зрения, солнечные системы горячего водоснабжения могут конкурировать с обычными системами.

Shell прогнозирует, что к 2040 году 50% мировой энергии будет поступать из возобновляемых источников. Германия и Япония благодаря хорошему финансовому стимулированию стали мировыми лидерами в области солнечной энергетики. , и, вероятно, в ближайшее время солнечные батареи будут удовлетворять более половины потребностей страны в электроэнергии. Также ожидается, что в ближайшие несколько лет миллионы семей в мире начнут использовать солнечную энергию, особенно в США и Японии.

(Просмотрели5 166 | Посмотрели сегодня 2)


Стоимость солнечных батарей за последние 35 лет уменьшилась в 100 раз Мировые АЭС. Производство атомной энергии по состоянию на 2014 год Экотехнологии, которые могут сделать мир чище. 9 современных направлений Основы ветроэнергетики. Как работает ветрогенератор?

С каждым днем количество мировых запасов угля, нефти, газа, то есть всего того, что служит нам сегодня источником энергии, уменьшается. И в скором будущем человечество придет к тому, что ископаемого топлива просто не останется. Поэтому все страны активно ищут спасение от стремительно надвигающейся на нас катастрофы. И первое средство спасения, которое приходит на ум – это, конечно, энергия солнца, которая используется людьми испокон веков для сушки одежды, освещения жилищ и приготовления пищи. Это и дало начало одному из направлений альтернативной энергетики – солнечной энергетике.

В качестве энергетического источника для солнечной энергетики используется энергия солнечного света, которую с помощью специальных конструкций преобразуют в тепловую или электрическую. По данным специалистов всего за одну неделю на земную поверхность от солнца поступает такое количество энергии, которое превосходит энергию мировых запасов всех видов топлива. И хотя темп развития данного направления альтернативной энергетики неуклонно растет, все же солнечная энергетика обладает не только достоинствами, но и недостатками.

Если к основным плюсам можно отнести общедоступность, а главное неисчерпаемость источника энергии, то к недостаткам причисляют:

  • необходимость аккумуляции получаемой от солнца энергии,
  • значительную стоимость применяемого оборудования,
  • зависимость от погодных условий и времени суток,
  • повышение температуры атмосферы над электростанциями и др.

Численные характеристики солнечного излучения

Существует такой показатель как солнечная постоянная. Его значение равняется 1367 Вт. Именно такое количество энергии приходится на 1 кв.м. планеты Земля. Вот только до поверхности земли из-за атмосферы энергии доходит примерно на 20-25% меньше. Поэтому значение солнечной энергии на метр квадратный, к примеру, на экваторе равняется 1020 Вт. А учитываю смену дня и ночи, изменение угла солнца над горизонтом, этот показатель снижается еще примерно в 3 раза.

Вот только откуда берется это самая энергия? Этим вопросом ученые впервые начали заниматься еще в 19 веке, причем версии были совершенно разные. Сегодня же в результате огромного числа исследований достоверно известно, что источником солнечной энергии является реакция превращения 4-х атомов водорода в ядро гелия. В результате этого процесса выделяется значительное количество энергии. К примеру, энергия, выделяемая при превращении 1 гр. водорода сравнима с энергией, которая выделяется при сгорании 15 т. бензина.

Преобразование солнечной энергии

Мы уже знаем, что энергию, получаемую от солнца необходимо преобразовать в какой-то другой вид. Необходимость этого возникает ввиду того, что человечество пока не имеет таких приборов, которые бы могли потреблять солнечную энергию в чистом ее виде. Поэтому были разработаны такие источники энергии как солнечный коллектор и солнечные батареи. Если первый используется для получения тепловой энергии, то вторые производят непосредственно электричество.

Существует несколько способов преобразования энергии солнца:

  • фотовольтаика;
  • термовоздушная энергетика;
  • гелиотермальная энергетика;
  • с использованием солнечных аэростатных электростанций.

Наиболее распространенным методом считается фотовольтаика. Принцип этого преобразования заключается в использовании фотоэлектрических солнечных панелей или как их еще называют солнечных батарей, посредством которых и происходит преобразование солнечной энергии в электрическую. Как правило, изготавливают такие панели из кремния, а толщина их рабочей поверхности составляет всего несколько десятых миллиметра. Разместить их можно везде, существует лишь одно условие – наличие большого количества солнечного света. Отличный вариант для установки фотопластин – крыши жилых домов и общественных зданий.

Помимо рассмотренных фотопластин для преобразования энергии солнечного излучения используют тонкопленочные панели. Отличаются они еще меньшей толщиной, что позволяет установить их где угодно, но значительный недостаток таких панелей – это низкий КПД. Именно по этой причине их монтаж будет оправдан только при больших площадях размещения. Ради шутки тонкопленочную панель можно разместить даже на корпусе ноутбука или на дамской сумочке.

В термовоздушной энергетике солнечная энергия преобразуется в энергию потока воздуха, который затем направляют на турбогенератор. А вот в случае использования солнечных аэростатных электростанций внутри аэростатного баллона происходит генерация водяного пара. Достигается этот эффект за счет нагрева солнечным светом поверхности аэростата, на которую нанесено селективно-поглощающее покрытие. Главное преимущество это метода заключается в достаточном запасе пара, которого хватает для продолжения работы электростанции в плохую погоду и ночью.

Принцип гелиотремальной энергетики заключается в нагревании поверхности, которая поглощает солнечные лучи и фокусирует их с целью последующего использования полученного тепла. Самый простой пример – это нагревание воды, которую затем можно использоваться в бытовых нуждах, например, для подачи в канализацию или батареи, экономя при этом газ или другое топливо. В промышленных масштабах энергия солнечного излучения, получаемая данным способом, преобразуется в электрическую энергию посредством тепловых машин. Строительство таких комбинированных электростанций может длиться свыше 20 лет, но темп развития солнечной энергетики не снижается, а наоборот, неукоснительно растет.

Где возможно применение солнечной энергии?

Использовать солнечную энергию можно в абсолютно различных областях – от химической промышленности до автомобилестроения, от приготовления пищи до отопления помещений. Например, использование солнечных батарей в автомобильной отрасли началось еще в 1955 году. Именно этот год ознаменовался выпуском первого автомобиля, который работал на солнечных батареях. Сегодня же выпуском подобных автомашин занимаются BMW, Toyota и другие крупнейшие компании.

В быту солнечная энергия используется для обогрева помещений, для освещения и даже для приготовления пищи. К примеру, солнечные печи из фольги и картона по инициативе ООН активно используют беженцы, которые были вынуждены покинуть свои родные места из-за тяжелой политической обстановки. Более сложные по конструкции солнечные печи используются для термообработки и плавки металлов. Одна из крупнейших таких печей находится на территории Узбекистана.

Наиболее интересными выдумками по использованию солнечной энергии можно считать:

  • Защитный чехол для телефона с фотоэлементом, являющийся одновременно и зарядкой.
  • Рюкзак с прикрепленной на нем солнечной панелью. Он позволит вам зарядить не только телефон, но и планшет и даже камеру, в общем, любую электронику, у которой есть USB-вход.
  • Солнечные Bluetooth-наушники.

А самая креативная задумка – это одежда, сшитая из специальной ткани. Пиджак, галстук и даже купальник – все это может стать не только предметом вашего гардероба, но и зарядным устройством.

Развитие альтернативной энергетики в странах СНГ

Высокими темпами альтернативная энергетика, в том числе и солнечная, развивается не только в США, Европе или Индии, но и в странах СНГ, в их число входит Россия, Казахстан, а в особенности Украина. Например, крупнейшая электростанция на солнечной энергии на территории стран бывшего Советского Союза «Перово» была построена в Крыму. Ее строительство завершилось в 2011 году. Эта электростанция стала 3-им новаторским проектом австрийской компании Activ Solar. Пиковая мощность «Перово» составляет около 100 МВт.

А в октябре того же года компанией Activ Solar была запущена еще одна солнечная электростанция «Охотниково» и также на территории Крыма. Ее мощность составила 80 МВт. «Охотниково» также получила статус крупнейшей, но уже на территории Центральной и Восточной Европы. Можно сказать, что альтернативная энергетика в Украине сделала громадный шаг на встречу безопасной и неиссякаемой энергии.

В Казахстане же ситуация выглядит немного иначе. В основном, развитие альтернативной энергетики в этой стране происходит лишь в теории. Потенциал у республики огромный, но раскрыть его полностью пока не получается. Конечно, правительство занимается этим вопросом, и даже был разработан план по развитию альтернативной энергетики в Казахстане, вот только доля энергии, получаемой от возобновляемых источников, в частности от солнца, будет составлять не более 1% в общем энергобалансе стране. К 2020 в планах запуск всего 4 солнечных электростанций, общая мощность которых будет составлять 77 МВт.

Альтернативная энергетика в России также развивается немалыми темпами. Но, как заявил заместитель министра энергетики, уклон в этой области делается в основном на дальневосточные регионы. Например, в Якутии суммарная выработка 4 солнечных электростанций, работающих в самых отдаленных северных поселках, составила более 50 тыс. кВт*ч. Это позволило сэкономить более 14 тонн дорого дизельного топлива. Еще одним примером использования солнечной энергии служит строящийся в Липецкой области многопрофильный авиационный комплекс. Электроэнергию для его работы будет вырабатывать первая СЭС, построенная также на территории Липецкой области.

Все это позволяет сделать следующий вывод: сегодня все страны, даже не самые развитые, стремятся максимально приблизиться к заветной цели: использованию альтернативных источников энергии. Ведь потребление электроэнергии растет с каждым днем, с каждым днем увеличивается количество вредных выбросов в окружающее среду. И многие уже понимают, что наше будущее и будущее нашей планеты зависит только нас.

Р.Абдуллина

Украина делает ставку на энергию Солнца

Подробнее .

«Хевел» увеличила годовой объем выпуска солнечных модулей в Новочебоксарске до 260 МВт

В России создали новый полупроводниковый материал для солнечных батарей

Группа российских ученых создала новый полупроводниковый материал без использования свинца, который может быть применен в солнечных батареях для повышения их эффективности. Об этом в 13 мая 2019 года сообщила пресс-служба одного из участников исследования Сколковского института науки и технологий (Сколтеха).


Большой интерес для использования в настоящее время представляют солнечные батареи на основе комплексных галогенидов свинца, то есть соединения свинца с элементами 17-й группы периодической таблицы Менделеева (фтором, хлором, бромом или иодом), с перовскитной структурой - напоминающей структуру минерала перовскита, кристаллы которого имеют кубическую форму. Такие батареи отличаются низкой стоимостью, простотой изготовления и высокой эффективностью преобразования света.

Массовое производство и внедрение перовскитных батарей в настоящее время ограничивается двумя факторами: низкой стабильностью комплексных галогенидов свинца и токсичностью этих соединений. Поэтому во всем мире активно ведется разработка альтернативных бессвинцовых материалов, в частности на основе галогенидов висмута и сурьмы. Однако все ранее полученные образцы имеют низкую эффективность преобразования света. Команда российских ученых доказала, что причиной является неоптимальное строение соединений висмута и сурьмы.


Физики разработали принципиально новый материал для солнечных батарей на основе перовскитоподобного комплексного бромида сурьмы (ASbBr6, где А является органическим положительно заряженным ионом). Солнечные батареи на основе этого материала показали рекордные для галогенидов сурьмы и висмута КПД преобразования света. По словам Трошина, эта работа открывает принципиально новые возможности для развития перовскитной электроники.

"Хевел" построит в Башкирии солнечную электростанцию с накопителем энергии

25 апреля 2019 года группа компаний «Хевел » сообщила, что до конца 2019 года построит в России гибридную солнечную электростанцию с промышленными накопителями энергии. Солнечная генерация общей мощностью 10 МВт будет расположена в Бурзянском районе Республики Башкортостан . Подробнее .

Найден нетоксичный способ получения нанокремния для применения в покрытиях солнечных батарей

13 февраля 2019 года стало известно о том, что ученые МГУ нашли нетоксичный способ производства кремниевых наноматериалов. При производстве кремниевых наноструктур, востребованных в разных областях промышленности , как правило, используется достаточно токсичная плавиковая кислота. Сотрудники МГУ имени М.В. Ломоносова нашли способ, как избежать ее применения. Открытие ученых МГУ может найти применение в промышленном производстве основанных на нанокремнии антиотражающих покрытий для солнечных батарей, оптических сенсоров для обнаружения различных молекул, наноконтейнеров для доставки лекарств . Исследование выполнено при поддержке Российского научного фонда (РНФ), его результаты опубликованы в международном журнале Frontiers in Chemistry. Подробнее .

В Ульяновской области построят завод по производству солнечных панелей

В январе во время рабочего визита в Китай делегация с губернатором Ульяновской области посетила предприятие технологического партнера австрийской компании Green Source для ознакомления с продукцией компании и обсуждения предстоящего строительства завода по производству солнечных панелей на территории Ульяновской области. Договоренность о строительстве такого завода была достигнута с австрийскими компаниями еще в прошлом году.

"В конце 2018 года мы договорились с австрийскими компаниями о строительстве в Ульяновской области предприятия по производству фотоэлектрических модулей для солнечных электростанций с использованием перспективной технологии", - сообщил губернатор Морозов 19 января на своей странице в фейсбуке.

2018

Четыре солнечные электростанции мощностью 100 МВт будут работать в Бурятии к 2022 году

Четыре солнечные электростанции (СЭС) общей мощностью 100 МВт будут работать в Бурятии к 2022 году. Об этом сообщил в понедельник и.о. министра по развитию транспорта , энергетики и дорожного хозяйства Алексей Назимов, выступая на заседании Совета по науке при главе Бурятии Алексее Цыденове .

Владельцам солнечных батарей на домах разрешат продавать электричество

Выкупать электроэнергию обяжут местные сбытовые компании по средней цене, пояснили в пресс-службе министерства. Ориентиром станет стоимость энергии у местных крупных электростанций. Владельцам частных домов в районах, не имеющих доступа к единой электросети России или же не включенных в ценовые зоны европейской части РФ и Урала с Сибирью (к примеру, Калининградская область и Дальний Восток) ее разрешат продавать по регулируемому ФАС тарифу. Претендовать на гарантированный выкуп энергии смогут установки не мощнее 15 кВт.

Не исключено, что владельцам ветряков и солнечных панелей в частных домах также установят налоговые льготы. Их доход от продажи лишней электроэнергии в размере до 150 тыс. руб. в год могут освободить от НДФЛ. Соответствующий вопрос рассматривается в правительстве.

Т Плюс начинает строительство крупнейших в России солнечных станций

- Развитие "зеленой" энергетики – ключевое направление работы Правительства области по освоению альтернативных видов топлива и сохранению окружающей среды. В области уже работают пять солнечных электростанций. Крупнейшая из них построена в Орске компанией "Т Плюс". С пуском второй очереди ее мощность возросла до 40 мегаватт. Солнечные электростанции действуют в Переволоцком, Грачевском, Красногвардейском, Соль-Илецком районах, – сказал Юрий Берг. – Сегодня мы делаем важный шаг вперед – начинаем строительство еще двух объектов альтернативной энергетики. Наша задача – укрепить передовые позиции Оренбургской области в развитии альтернативной энергетики. Мы эту задачу выполним, и к 2020 году мощность всех солнечных электростанций Оренбуржья составит более 200 мегаватт. Сегодня экологический аспект приобретает решающее значение для определения качества и уровня комфортности жизни человека. Это является приоритетом президентской политики. Развитие альтернативной энергетики – это взгляд в будущее, – констатировал глава региона.

2017

Итоги развития солнечной энергетики за год

Первый заместитель Министра энергетики РФ Текслер Алексей Леонидович выступил в январе 2018 года на министерском круглом столе "Инновации для трансформации энергетики: как электротранспорт/электромобили изменяют энергосистему", который прошел в рамках восьмого заседания Ассамблеи IRENA.

Алексей Текслер рассказал участникам дискуссии о развитии ВИЭ в России . По его словам, совсем недавно в России, кроме большой гидроэнергетики, не было компетенций в сфере ВИЭ и за несколько лет был сделан большой шаг вперед .

"Главный итог 2017 года, который я готов констатировать – возобновляемая энергетика в России состоялась как отрасль", - подчеркнул замглавы.

Практически с нуля в России создана своя индустрия в солнечной энергетике, от исследований до производства солнечных панелей и строительства генерирующих станций. За 2017 год было построено больше мощностей возобновляемых источников энергии, чем за предыдущие два года. В 2015-2016 годах в России были введены 130 МВт ВИЭ, а в 2017 году построено 140 МВт, из них более 100 МВт солнечные электростанции, а 35 МВт – первый крупный ветропарк , запуск которого состоится в ближайшее время.

В числе ключевых достижений Первый заместитель Министра энергетики отметил также запуск производства солнечных панелей нового поколения на основе отечественной гетероструктурной технологии. Россия стала производить модули с КПД выше 22%, которые по этому показателю входят в мировую тройку лидеров по эффективности в серийном производстве. В этом году планируется увеличить мощность производства завода со 160 МВт до 250 МВт.

Алексей Текслер выразил уверенность в том, что, как и в солнечной энергетике, в ближайшие три года будет создана индустрия ветровой энергетики . Уже за 2016-2017 гг. в российскую ветроэнергетику пришли крупные российские и иностранные инвесторы, которые взяли обязательства по развитию технологической и производственной базы в России.

В Башкортостане введена в эксплуатацию Исянгуловская солнечная электростанция

В Зианчуринском районе Республики Башкортостан осенью 2017 года введена в эксплуатацию Исянгуловская солнечная электростанция (СЭС) мощностью 9 МВт.

Инвестором и генеральным подрядчиком проекта выступают структуры группы компаний "Хевел " (совместное предприятие Группы компаний "Ренова " и АО РОСНАНО). К строительству также были привлечены местные подрядные организации. После завершения всех регламентных процедур станция начнет плановые поставки электроэнергии в сеть. Инвестиции в строительство станции составили более 1,5 млрд рублей.

В 2015-2016 гг. в Республике Башкортостан были построены и введены в эксплуатацию Бугульчанская СЭС общей мощностью 15 МВт, а также Бурибаевская СЭС мощностью 20 МВт. С момента выхода на оптовый рынок электроэнергии и мощности станции выработали более 40 ГВт*ч чистой электроэнергии.

С вводом Исянгуловской СЭС установленная мощность солнечной генерации в регионе достигла 44 МВт. Новый объект стал третьим из пяти, которые "Хевел" планирует построить в Башкортостане в ближайшие годы. Суммарная мощность всех СЭС в регионе составит 64 МВт, а общий объём инвестиций оценивается более чем в 6 млрд рублей.

Ученые нашли способ повышения эффективности солнечных батарей

Российские и швейцарские сследователи изучили влияние на структуру и производительность солнечных батарей изменения соотношения компонентов, из которых формируется светопоглощающий слой перовскитной солнечной ячейки. Результаты работы опубликованы в журнале Journal of Physical Chemistry C .

Впервые органо-неорганические перовскиты были разработали пять лет назад, но по КПД они уже обогнали наиболее распространенные и более дорогие кремниевые солнечные элементы. В структуре перовскитов находятся кристаллические соединения, в котором располагаются молекулы растворителя исходных компонентов. Растворенные компоненты, выпадая из раствора, образуют пленку, на которой растут кристаллы перовскита. Ученые выделили и описали три промежуточных соединения, которые являются кристаллосольватами одного из двух растворителей, наиболее часто используемых при создании перовскитных солнечных батарей. Для двух соединений ученые впервые установили кристаллическую структуру.

«Мы выяснили, что ключевым фактором, определяющим функциональные свойства перовскитного слоя, является образование промежуточных соединений, поскольку кристаллиты перовскита наследуют форму промежуточных соединений. Это, в свою очередь, влияет на морфологию пленки и эффективность солнечных батарей. Это особенно важно при получении тонких пленок перовскита, поскольку игольчатая или нитевидная форма кристаллов приведет к тому, что образованная пленка будет несплошной, а это значительно снизит КПД такой солнечной ячейки», - отметил руководитель исследования Алексей Тарасов.

Дополнительно авторы исследовали термическую стабильность полученных соединений и с помощью квантово-химического моделирования рассчитали энергию их образования. Также авторы выяснили, что кристаллическая структура промежуточного соединения задает форму образующихся кристаллов перовскита, что определяет структуру светопоглощающего слоя. Эта структура, в свою очередь, влияет на производительность получаемой солнечной батареи.

Исследование было проведено научными сотрудниками МГУ в сотрудничестве с учеными Курчатовского центра синхротронного излучения, Российского университета дружбы народов , СПбГУ и Федеральной политехнической школы Лозанны в Швейцарии .

Завод Вексельберга начинает выпуск солнечных батарей на экспорт

«Хевел» в Оренбургской и Астраханской областях

В октябре губернатор Астраханской области Александр Жилкин и генеральный директор ГК «Хевел» Шахрай Игорь подписали двухстороннее соглашение, предусматривающее постройку и введение в эксплуатацию трёх сетевых солнечных электростанций.

В течение двух лет на территории региона появятся мощности для выработки 135 МВт энергии с перспективами увеличения до 160 МВт. Инвестиционная стоимость проекта – 15 млрд рублей. Планируется, что уже к концу года одну электростанцию достроят и введут в эксплуатацию. СЭС принесут в казну области дополнительные налоговые поступления. По словам Игоря Шахрая, за каждые 10 МВт энергии в год будет отчисляться 100 млн рублей налогов. Гендиректор ООО «Хевел» отметил, что астраханская земля – самая солнечная на юге России . Кроме того, в регионе имеется наработанная схема для подключения к основным энергосетям. В дополнение к этому власти всячески поддерживают и стремятся развивать направление чистой энергетики в области. Всего до конца года в регионе будут введены 6 СЭС суммарной мощностью 90 МВт.

2015 год

Мировая солнечная энергетика вплотную подходит к той стадии, когда производство электроэнергии с помощью Солнца начинает окупаться обычным, не повышенным тарифом, стоимость материалов и величина необходимых инвестиций резко падают, так как технологии развиваются и начинает сказываться эффект объема (много производить дешевле, чем мало). В сравнении с 2014 годом объем выработанной энергии на основе СЭС в мире вырос на треть. На конец 2015 года совокупная установленная мощность фотоэлектрических солнечных установок в мире составила 227 ГВт, за год установленные мощности солнечных электростанций увеличились в 2 раза. Если раньше мировым лидером по развитию возобновляемой энергетики была Европа , то в прошлом году пальму первенства перехватил Китай .

Плавучий остров-панель оказался востребованным на рынке чистой энергии, многие страны взяли этот метод получения электроэнергии на вооружение. Например, в Чили , где добыча полезных ископаемых требует постоянных затрат энергии и воды: положив солнечную панель на гладь многочисленных озер, правительство удешевило добычу ископаемых и снизило углеродный след.

Плавучие панели-батареи пока что проходят испытания на шахте Лос-Бронкес, поблизости которой создан экспериментальный энергетический остров - проект «Лос Тортолас» финансируется компаниями из Великобритании и США , площадь солнечных батарей составляет пока 112 квадратных метров, чилийский министр горнодобывающей промышленности Бальдо Прокурица. В апреле Тортолас был торжественно открыт, плавучая батарея обошлась в 250 тысяч долларов , но в случае успеха площадь будет расширена до 40 гектаров.

По мнению экспертов, в Чили у солнечной энергетики огромные перспективы. В стране порядка 800 прудов, которые можно использовать для установки плавучих солнечных электростанций (СЭС). По задумке инженеров, батарею-поплавок помещают в центр водного массива, который используется для хранения «хвостов» (отходов от добычи полезных ископаемых). Таким образом достигается тройная польза:

  • тень снижает температуру воды пруда;
  • испарение воды снижается на 80%;
  • производствоудешевляется многократно, работая на энергии солнца.

Экологи аплодируют такому плану, ведь в шахте остается куда больше воды для естественного баланса, такой подход способен уменьшить региональный расход и без того дефицитной пресной воды.

С помощью этой системы Чили рационализирует потребление свежей воды в соответствии с поставленной целью усовершенствования процесса добычи полезных ископаемых и сокращения потребления пресной воды на 50% к 2030 году. Углеродный след автоматически снижается тоже за счет производства экологически чистой энергии.

Чили постепенно наращивает долю чистой энергии

Шахта Лос-Бронкес расположена в 65 км от столицы Чили на высоте 3,5 км над уровнем моря. Почти 20% энергии, которая в производится и используется в латиноамериканской стране в 2019 году - чистая. В 2013 году показатель был равен всего шести процентам, что демонстрирует уверенный рост доли зеленой энергетики в народном хозяйстве страны и ее приверженность целям Парижского климатического соглашения (2015).

Разработки инженеров из Ciel & Terre, а также финансовая помощь дали Чили возможность расширить горизонты энергетического рынка и вырваться из порочного круга, в котором электроэнергию получают путем сжигания полезных ископаемых. Плавучие солнечные панели просты в монтаже, техобслуживании и управлении. Термопластик высокой плотности, установленный под углом 12 градусов, полностью экологичен и пригоден для вторичной переработки. Плавучая СЭС не вредит природе, экономически выгодна и гибка в настройках.

По словам чилийских инженеров, это простая и доступная альтернатива наземным объектам солнечной энергетики. Это идеальный вариант для водоемких отраслей промышленности, ограниченных в потреблении воды или земельных площадях.

«Хевел» построит в Казахстане солнечную электростанцию мощностью 100 МВт

Энергия холода: "антисолнечная батарея" работает по ночам

Инженеры создали устройство, которое можно назвать солнечной батареей навыворот: оно вырабатывает ток не когда поглощает фотоны, а когда излучает их. Такой источник энергии мог бы питать различное оборудование по ночам, отдавая в космос тепло, запасённое поверхностью Земли .

Как известно, нагретые тела испускают излучение. В этом легко убедиться, поднеся руку к горячей батарее (лучше сбоку, чтобы не мешал восходящий поток тёплого воздуха). Если объект не получает из внешней среды столько же тепловой энергии, сколько излучает, он остывает. Чтобы предмет охлаждался эффективнее, нужно предоставить ему свободно обмениваться фотонами с как можно более холодной средой.

Ещё в XX веке физики теоретически рассчитали, а в последние годы экспериментально продемонстрировали эффект отрицательной освещённости. Он заключается в том, что фотодиод может вырабатывать электричество не только поглощая приходящие из внешней среды фотоны (как в обычной солнечной батарее), но и, наоборот, отдавая их и за счёт этого охлаждаясь. На этот процесс тратится энергия, запасённая в устройстве в виде тепла.

Для работы такого устройства нужна холодная среда, в которую фотоны будут уходить, не возвращаясь обратно. И такая среда у нас под рукой, вернее, над головой: это открытый космос.


Разумеется, если такой излучатель просто запустить на орбиту (и не дать ему нагреваться от Солнца, держа в тени), он быстро высветит всё своё тепло, сравняется по температуре с космическим вакуумом и перестанет вырабатывать энергию.

Однако на Земле можно обеспечить ему тепловой контакт с поверхностью планеты. Как только фотоэлемент станет холоднее окружающих тел, дефицит энергии будет восполнен за счёт теплопроводности. Благодаря этому фотоны будут всё так же исправно улетать в ледяное космическое пространство через атмосферу, которая достаточно прозрачна на длинах волн от 8 до 13  микрометров (узкая полоса в среднем инфракрасном диапазоне). Часть энергии покидающего установку излучения будет преобразовываться в электрическую.

Именно такое устройство и создали авторы новой работы. В качестве материала для фотодиода они выбрали соединение ртути, кадмия и теллура (HgCdTe). Это вещество эффективно излучает именно в нужном диапазоне длин волн. Пройдя сквозь полусферическую линзу из арсенида галлия (GaAs) и окно из феррида бария (BaFe2), фотоны попадают на параболическое зеркало, отправляющее их прямо в небо. Чтобы попасть на диод из внешней среды, излучению требуется пройти такой же путь в обратную сторону. Все эти ухищрения нужны для того, чтобы установка обменивалась фотонами практически исключительно с космосом, а энергию от Земли получала за счёт теплопроводности.

Экспериментальная установка в опытах группы Фаня генерировала 64 нановатта на квадратный метр поверхности. Разумеется, от такой мощности нельзя запитать приборы. Однако, как рассчитали авторы, теоретический предел с учётом влияния атмосферы составляет 4 ватта на квадратный метр. Это гораздо меньше, чем у современных солнечных батарей (100–200 ватт на квадратный метр), но вполне достаточно для питания некоторых устройств.

Чтобы приблизить мощность установки к этой отметке, нужно подобрать для фотодиода материал с более выраженным эффектом отрицательной освещённости. В настоящее время исследователи заняты поисками такого вещества.

2018

Рынок солнечной энергетики ЕС вырос за год на 36%

Опубликованы предварительные данные о развитии солнечной энергетики в европейских странах. По-прежнему лидирует Германия , на второе место вышла Турция, третье место досталось Нидерландам.

Согласно статистике Ассоциации солнечной энергетики SolarPower Europe, европейский рынок значительно вырос в 2018 году. В 28 странах ЕС было введено в эксплуатацию 8 ГВт солнечных электростанций – это на 36% больше, чем в 2017 году. При этом 11 стран уже перевыполнили взятые на себя обязательства по внедрению ВИЭ и вышли на уровень 2020 года. Более широкий еврорынок, включающий Турцию, Россию , Украину, Норвегию, Швейцарию, Сербию, Белоруссию, также показал рост на 11 ГВт, что на 20% больше, чем годом ранее.

Крупнейшим рынком солнечной энергетики на европейском континенте в 2018 году в очередной раз стала Германия с новыми СЭС общей мощностью 3 ГВт. Турция за счет высоких темпов развития рынка за последние два года заняла второе место (1,64 ГВт). Нидерланды, где также был установлен национальный рекорд в 1,4 ГВт введенных в строй СЭС, разместилась по итогам года на третьем месте.

По оценкам экспертов, в 2019 году отрасль вырастет еще больше – на развитие солнечной энергетики в Европе скажутся такие факторы, как отмена пошлин на китайские солнечные панели и конкурентоспособность промышленных фотоэлектрических солнечных электростанций.

Исследователи приблизили эффективность солнечной батареи к обычной

5 октября 2018 года стало известно, что исследователи приблизили эффективность солнечной батареи к обычной. Солнечная энергия считается наиболее устойчивым вариантом замены ископаемого топлива, но технологии преобразования ее в электричество должны быть очень эффективными и дешевыми. Ученые из отдела энергетических материалов Окинавского института науки и технологий считают, что они нашли формулу для изготовления недорогих высокоэффективных солнечных батарей.

Для этого профессор Яобинг Ци, руководитель исследования, выделил три условия, которые приведут технологию к введению на рынок и успешной коммерциализации. По его словам, скорость преобразования солнечного света в электричество должна быть высокой, недорогой, а также долговечной.

На октябрь 2018 года большинство коммерческих фотоэлементов, которые используются в батареях, сделаны из кристаллического кремния. Он имеет относительно низкую эффективность - около 22%. В конечном итоге это приводит к тому, что продукт оказывается для потребителя дорогим, а его единственная мотивация для покупки - это забота о природе. Японские ученые предлагают решить проблему с помощью перовскита.

SoftBank построит в Саудовской Аравии крупнейшую солнечную электростанцию

Соответствующий меморандум о намерениях подписали в Нью-Йорке наследный принц Саудовской Аравии Мухаммед бин Сальман Аль Сауд и генеральный директор SoftBank Масаеши Сон. Принц находится в с трехнедельным официальным визитом, отмечает телеканал.

Планируемая мощность каскада солнечных батарей в 200 ГВт - это в разы больше, чем у любой существующей солнечной электростанции. Для сравнения, пиковая мощность расположенной в Калифорнии Topaz Solar Farm, одной из крупнейших подобных электростанций, составляет около 550 МВт. Энергию там аккумулируют 9 млн тонкослойных фотоэлектрических модулей.

Голландский стартап Oceans of Energy, специализирующийся на разработке плавучих систем по производству возобновляемой электроэнергии, объединился с пятью крупными компаниями, чтобы построить первую в мире солнечную электростанцию, дрейфующую в открытом море. "Такие электростанции уже работают на водоемах в материковой части разных стран. Но на море их никто не строил - это чрезвычайно трудная задача. Приходится иметь дело с огромными волнами и другими разрушительными силами природы. Однако, мы убеждены, что объединив свои знания и опыт, справимся с этим проектом", - рассказал глава Oceans of Energy Аллард ван Хоекен.
По предварительным расчетам, плавучая электростанция будет на 15% эффективнее существующих установок. Выбирать наиболее подходящие солнечные модули будет Центр исследований энергетики Нидерландов (ECN). Его специалисты считают, что это для проекта можно использовать стандартные солнечные панели, которые работают и на наземных солнечных станциях. "Посмотрим, как они поведут себя в морской воде и в неблагоприятных погодных условиях", - отметил представитель ECN Ян Кроон.

Представители консорциума подчеркивают, что плавучую солнечную электростанцию можно установить прямо между морскими ветровыми турбинами. Там более спокойные волны и уже проведены все линии электропередачи. В ближайшие три года консорциум будет работать над прототипом при финансовой поддержке государственного Агентства предпринимательства Нидерландов. А Утрехтский университет предоставит стартапу материалы своих исследований.

Стоимость солнечной энергии в Австралии упала на 44% с 2012 года

Такое увлечение возобновляемой энергии привело к тому, что люди действительно начали платить меньше за электричество. Плюсом к этому также стало то, что стоимость самой электроэнергии снизилась. С 2012 года издержки на установку и эксплуатацию солнечных панелей упали почти на половину.

В 2017 году в стране частные домовладельцы и бизнес установили панелей суммарной мощностью 1,05 ГВт. Такую оценку дает ведомство, отвечающее за вопросы чистой энергетики в стране. Власти говорят, что это рекордный показатель за всю историю. Сообщается, что в начале этого десятилетия рост возобновляемой энергетики был связан с выгодными субсидиями и налоговыми предложениями, но рост 2017 отличается: жители страны решили таким образом бороться с повышающимися тарифами на электроэнергию, и движение стало массовым.

По прогнозам BNEF, Австралия станет мировым лидером по внедрению солнечных панелей. К 2040 году 25% потребности страны в электроэнергии будет покрываться солнечными панелями на крышах. Это станет возможным из-за того, что сегодня срок окупаемости таких решений сократился до минимального с 2012 года. Пока это не значит, что традиционные электростанции Австралии уходят в прошлое, но люди становятся свободнее в вопросах обеспечения себя электроэнергией.

2017

Южная Корея в 5 раз увеличит солнечную генерацию к 2030 году

Министр торговли, промышленности и энергетики Южной Кореи обнародовал план правительства по пятикратному увеличению выработки солнечной энергии к 2030 году .

Это заявление было сделано вскоре после того, как избранный в этом году президент Мун Чжэ Ин пообещал прекратить государственную поддержку строительства новых атомных электростанций и взять курс на экологически чистые источники электроэнергии. Правительство уже отменило строительство шести ядерных реакторов в Южной Корее .

Всего страна планирует получать к 2030 пятую часть вырабатываемого электричества из возобновляемых источников. В прошлом году этот показатель составлял 7%. Для этого к назначенному сроку планируется добавить 30,8 ГВт солнечных мощностей и 16,5 ГВ ветровых. Дополнительная энергия будет поступать из крупнейших проектов, а также от частных домохозяйств и малого бизнеса, заявил министр Пайк Унгю. "Мы фундаментально изменим путь развития возобновляемой энергетики, создав условия, при которых граждане легко смогут принять участие в торговле возобновляемой энергией", - сказал он.

Это значит, что к 2022 году примерно 1 из 30 домохозяйств должно быть оборудовано солнечными панелями, сообщает Clean Technica.

Тем не менее, пока Южная Корея занимает пятое место в мире по использованию атомной энергии. В стране 24 действующих реактора, обеспечивающих приблизительно треть потребностей страны в электричестве.

BP инвестировала $200 млн в солнечную энергетику

Пустыня Атакама в Чили- одно из самых солнечных и сухих мест на планете. Логично, что именно там решили построить крупнейшую в Латинской Америке солнечную электростанцию El Romero. Гигантские солнечные панели покрывают 280 га площади. Ее пиковая мощность - 246 МВт, а в год электростанция генерирует 493 ГВт-ч энергии - достаточно, чтобы обеспечить электричеством 240 000 домов.

Удивительно, но всего пять лет назад в Чили почти не использовали возобновляемые источники энергии. Страна была зависима от соседей-поставщиков энергоносителей, которые завышали цены и заставляли чилийцев страдать от непомерных счетов за электричество. Однако, именно отсутствие ископаемого топливо привело к серьезному потоку инвестиций в возобновляемые источники, особенно в солнечную энергетику.

Сейчас Чили производит практически самую дешевую солнечную энергию в мире. Компании надеются, что страна станет "Саудовской Аравией для Латинской Америки". Чили уже присоединился к Мексике и Бразилии в первой десятке стран-производителей возобновляемой энергетики, и теперь собирается стать лидером при переходе на "чистую" энергию в Латинской Америке.

"Правительство Мишель Бачелет совершило тихую революцию, - уверен социолог Еугенио Тирони. - Ее заслугу в переходе на возобновляемые источники энергии трудно переоценить, и это определит фактор развития страны на долгие годы".

Теперь, когда олигополистический рынок энергетики в Чили открыт для конкурентной борьбы, правительство поставило новую цель: к 2025 году 20% всей энергии страны должно поступать из возобновляемых источников. А к 2040 году Чили собирается полностью перейти на "чистую" энергетику. Даже экспертам это не кажется утопией, поскольку солнечные электростанции страны при ныне существующих технологиях производят в два раза более дешевое электричество, чем угольные электростанции. Цены на солнечную энергию упали на 75%, достигнув рекордных 2,148 центов за киловатт-час.

Компании-производители сталкиваются с другой проблемой: слишком дешевое электричество не приносит особой прибыли, а содержание и замена солнечных панелей стоит недешево. "Правительству придется строить долгосрочные стратегии, чтобы чудо не стало кошмаром", - заявил генеральный директор испанского конгломерата Acciona Хосе Игнасио Эскобар.

Google полностью переходит на солнечную и ветровую энергию

Компания стала крупнейшим в мире корпоративным покупателем возобновляемой энергии, достигнув суммарной мощности 3 ГВт. Общие инвестиции Google в сферу чистой энергетики достигли $3,5 млрд, пишет в ноябре 2017 года Electrek .

Google официально переходит на стопроцентное использование солнечной и ветряной энергии. Компания подписала контракт с тремя ветровыми электростанциями: Avangrid в Южной Дакоте, EDF в Айове и GRDA в Оклахоме, суммарная мощность которых составляет 535 МВт. Теперь офисы Google по всему миру будут потреблять 3 ГВт возобновляемой энергии.

Общие инвестиции компании в сферу энергетики достигли $3,5 млрд, и 2/3 из них приходится на объекты в . Такой интерес к "чистым" источникам связан, в первую очередь, с падением стоимости солнечной и ветряной энергии на 60-80% за последние годы.

Впервые Google подписал договор о сотрудничестве с солнечной фермой в Айове мощностью 114 МВт еще в 2010 году. К ноябрю 2016 года компания уже была участником 20 проектов по возобновляемой энергетике. Полностью перейти на энергию солнца и ветра она собиралась еще в декабре 2016 года. Сейчас Google самый крупный в мире корпоративный покупатель возобновляемой энергии.

В Швеции изобрели умные стекла для окон

Ученые давно исследуют данную область и ищут применение разработке. В современном мире такая технология актуальна, так как теплопотери домов из-за окон составляют примерно 20%. Ученые считают, что их изобретение сможет также применяться для теплоизоляции различных объектов.

В Иране деревни продают электроэнергию государству

На осень 2017 года «зеленых» деревень в ИРИ более 200. Ожидается, что к весне 2018 года их число достигнет 300. "Иран сегодня сообщает", что в некоторых населенных пунктах страны солнечные батареи стоят уже десять лет. Отмечается, что самые большие объемы энергии из солнца производят в провинциях Керман, Хузестан и Лурестан .

Изначально появление альтернативных источников энергии в деревнях Ирана обуславливалось невозможностью доставки в них электричества из городов. Теперь собственную энергию они продают Министерству энергетики ИРИ. Планируется выработать законодательные нормы, согласно которым закупки электроэнергии в деревнях станут постоянными.

К 2030 году Иран рассчитывает производить 7500 МВт «зеленой» энергии, сегодня этот показатель всего 350 МВт. Однако у страны есть хорошие перспективы для развития солнечной энергетики, потому что на 2/3 территории солнце светит 300 дней в году.

Британские ученые изобрели стеклянные кирпичи с солнечными батареям

Группа ученых Эксетерского университета в Англии разработала стеновые блоки из стекла со встроенными солнечными батареями. Об этом пишет архитектурный портал Archdaily. Блоки можно использовать при строительстве домов вместо обычных кирпичей.

Стройматериал назвали «Solar Squared» («Солнечная квадратная плитка»). Как показали тесты в лаборатории университета, помимо генерации электроэнергии блоки обладают и рядом других полезных свойств. В частности, построенные таким образом стены хорошо пропускают в здание солнечный свет и сохраняют тепло в помещениях.

Для продвижения продукта ученые создали инновационную компанию The Build Solar. В настоящее время ведется поиск инвесторов. Вывод «солнечной плитки» на рынок предварительно запланирован на 2018 год.

В Дубае запустили крупнейшую в мире солнечной электростанции

Установка каждой гелиопанели обошлась в 6 тыс. евро, включая аренду на год, ремонт и техническое оборудование. Планируется, что солнечные батареи будут работать на остановках общественного транспорта около года, после чего будут переданы школам и детсадам.

По словам Петра Свитальского, главы делегации ЕС в Армении, Евросоюз заинтересован в развитии альтернативной энергетики в стране. Остановку с гелиопанелями он назвал «солнечной остановкой Евросоюза ».

Становились ли вы участником обсуждений альтернативной энергии? Практически каждый человек хоть что-то, но слышал об этом. И многим даже выпадало воочию наблюдать солнечные батареи или ветровые электростанции. Сейчас развитие данной сферы энергоснабжения очень важно для дальнейшего комфортного существования человечества.

Так как основную часть традиционных ресурсов, таких как полезные ископаемые, мы практически исчерпали, приходится искать более долговечные источники. Одним из таких нетрадиционных источников энергии является солнечная энергия. Этот ресурс один из наиболее распространенных и легкодоступных, поскольку солнечный свет в том или ином количестве есть в любом уголке нашей планеты. Поэтому разработки, связанные с аккумуляцией солнечной энергией, начались достаточно давно и активно проводятся и по сей день.

Как источник энергии солнечный свет отличная альтернатива традиционным ресурсам. И при грамотном использовании вполне может вытеснить все другие энергоресурсы в будущем.

Чтобы найти наиболее эффективные методы преобразования энергии Солнца, ученым нужно было понять, какое превращение является источником солнечной энергии. Для получения ответа на данный вопрос было проведено огромное количество опытов и исследований. Существуют разные гипотезы, призванные объяснить это явление. Но экспериментальным путем в процессе долгих исследований было доказано, что реакция, во время которой с помощью ядер углерода водород превращается в гелий, выступает тем самым основным источником солнечной энергии.

Мы уже знаем, что источником солнечной энергии являются водород и гелий, но ведь и сама солнечная энергия – это источник для определенных процессов. Все земные природные процессы осуществляются благодаря энергии, полученной от Солнца.

Без солнечных излучений был бы невозможным:

  • Круговорот воды в природе. Именно благодаря воздействию Солнца испаряется вода. Именно этот процесс запускает циркуляцию влаги на Земле. Повышение и понижение температуры влияет на образование облаков и выпадение осадков.
  • Фотосинтез. Процесс, благодаря которому поддерживается баланс углекислого газа и кислорода, образуются необходимые для развития и роста растений вещества также происходит с помощью солнечных лучей.
  • Циркуляция атмосферы. Солнце влияет на процессы перемещения воздушных масс и теплорегуляции.

Солнечная энергия – это основа существования жизни на Земле. Но на этом ее благотворное воздействие не заканчивается. Для человечества солнечная энергия может быть полезной как альтернативный источник энергии.

В настоящее время активное развитие технологий сделало возможным преобразование энергии Солнца в другие применяющиеся человеком виды. Как возобновляемый источник энергии солнечная энергия получила широкое распространение и активно используется, как в промышленных масштабах, так и локально на небольших частных участках. И с каждым годом сфер, где применение гелиотермальной энергии является обыденным делом, становится все больше.

Сегодня солнечный свет как источник энергии используется:

  • В сельском хозяйстве для отопления и электроснабжения различных хозяйственных построек таких, как теплицы, ангары и прочие.
  • Для обеспечения электричества в медицинских центрах и зданий спортивного назначения.
  • Для снабжения электроэнергией населенных пунктов.
  • Для обеспечения более дешевого освещения на улицах городов.
  • Для поддержания налаженной работы всех коммуникационных систем в жилых домах.
  • Для ежедневных бытовых потребностей населения.

Исходя из этого, мы видим, что солнечная энергия в действительности может стать отличным источником питания практически в каждой сфере человеческой деятельности. Поэтому продолжение исследований в данной отрасли могут изменить привычное нынешнее существование в корни.

На сегодняшний день благодаря различным разработкам и методам солнечная энергия как альтернативный источник энергии может быть преобразована и аккумулирована разными способами. Сейчас существуют системы активного использования гелиоэнергии, и пассивные системы. В чем их суть?

  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света) по большей части направлены на использование прямой солнечной энергии. Пассивные системы – это здания, в которых проектирования происходило таким способом, чтобы как можно больше световой и тепловой энергии получать от Солнца.
  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы), в свою очередь, подразумевают действительно переработку полученной солнечной энергии в другие необходимые человеку виды.

Оба вида подобных систем применяются в тех или иных случаях в зависимости от потребностей, которые они должны удовлетворять. Будь то строительство экологически чистого солнечного дома или установка коллектора на участке – это в любом случае даст свой результат и будет выгодным вложением.

Что такое солнечная электростанция? Это специально организованное инженерное сооружение, благодаря которому происходят процессы преобразования солнечной радиации для дальнейшего получения электроэнергии. Конструкции подобных станций могут быть совершенно различными в зависимости от того, какой способ переработки будет применяться.

Разновидности солнечных электростанций:

  • СЭС, в основе сооружения которой находится башня.
  • Станция, сооружающаяся по тарельчатому типу.
  • Основанная на работе фотоэлектрических модулей.
  • Станции, работающие с применением параболоцилиндрических концентраторов.
  • С двигателем Стерлинга, взятым за основу работы.
  • Станции аэростатного типа.
  • Электростанции комбинированного типа.

Как мы видим, солнечная электростанция как источник энергии давно перестала быть частью утопических научно-фантастических романов и активно используется во всем мире для удовлетворения энергетических потребностей общества. В ее работе существуют как явные преимущества, так и недостатки. Но их правильный баланс дает возможность получать необходимый результат.

Плюсы и минусы солнечных электростанций

Достоинства:

  • Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
  • Солнечные установки достаточно безопасны в использовании.
  • Подобные электростанции являются полностью автономными.
  • Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
  • Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
  • Они не прихотливы в обслуживании и достаточно просты в использовании.
  • Также для оборудования СЭС характерный долгий эксплуатационный период.

Недостатки:

  • Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
  • Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
  • Очень высокая и малодоступная стоимость оборудования для солнечных установок.
  • Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
  • Значительное повышение температуры воздуха в пределах электростанции.
  • Потребность в использовании местности с огромной площадью.
  • Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.

Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана.

Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.

Солнечная энергия – энергия будущего

Чем дальше шагает в своем техническом развитии наше общество, тем больше источников энергии может потребоваться с каждым новым этапом. Но традиционных ресурсов становится все меньше, а цена на них растет. Поэтому люди начали активнее задумываться об альтернативных вариантах энергоснабжения. И тут пришли на помощь возобновляемые источники. Энергия ветра, воды или Солнца – это новый виток, позволяющий и дальше развиваться обществу, снабжая его необходимыми ресурсами.