Движение развитие внутренняя энергия. Формула внутренней энергии

  • 26.09.2019

Их взаимодействия.

Внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии. Рассмотрим взаимное превращение механической и внутренней энергий. Пусть на свинцовой плите лежит свинцовый шар . Поднимем его вверх и отпустим. Когда мы подняли шар, то сообщили ему потен-циальную энергию. При падении шара она уменьшается, т. к. шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии шара в кинетическую. Но вот шар ударился о свинцовую плиту и остановился. И кинетическая, и потенциальная энергии его относительно плиты стали равными нулю. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился, и на плите образовалась небольшая вмятина; измерив же их температу-ру , мы обнаружим, что они нагрелись.

Нагрев означает увеличение средней кинетической энергии молекул тела. При деформации из-меняется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.

Таким образом, можно утверждать, что в результате удара шара о плиту происходит превращение механической энергии, которой обладал в начале опыта шар, во внутреннюю энергию тела.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую.

Например, если взять толстостенный стеклянный сосуд и накачать в него воздух через отверстие в пробке, то спустя какое-то время пробка из сосуда вылетит. В этот момент в сосуде образуется туман. Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внут-ренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку (т. е. расширяясь), совершил работу за счет уменьшения своей внутренней энергии. Кинетическая энергия пробки увеличилась за счет внутренней энергии сжатого воздуха.

Таким образом, одним из способов изменения внутренней энергии тела является работа, совершаемая молекулами тела (или другими телами) над данным телом. Способом изменения внут-ренней энергии без совершения работы является теплопередача .

Внутренняя энергия идеального одноатомного газа.

Поскольку молекулы идеального газа не взаимодействуют друг с другом, их потенциальная энергия считается равной нулю. Внутренняя энергия идеального газа определяется только кинетической энергией беспорядочного поступательного движения его молекул. Для ее вычисления нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что k N A = R , получим значение внутренней энергии идеального газа :

.

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его температуре. Если воспользоваться уравнением Клапейрона-Менделеева , то выражение для внутренней энергии идеального газа можно представить в виде:

.

Следует отметить, что, согласно выражению для средней кинетической энергии одного атома и в силу хаотичности движения, на каждое из трех возможных направлений движения, или каждую степень свободы , по оси X , Y и Z приходится одинаковая энергия .

Число степеней свободы — это число возможных независимых направлений движения молекулы.

Газ, каждая молекула которого состоит из двух атомов, называется двухатомным. Каждый атом может двигаться по трем направлениям, поэтому общее число возможных направлений дви-жения — 6. За счет связи между молекулами число степеней свободы уменьшается на одну, по-этому число степеней свободы для двухатомной молекулы равно пяти .

Средняя кинетическая энергия двухатомной молекулы равна . Соответственно внутрен-няя энергия идеального двухатомного газа равна:

.

Формулы для внутренней энергии идеального газа можно обобщить:

.

где i — число степеней свободы молекул газа (i = 3 для одноатомного и i = 5 для двухатомного газа).

Для идеальных газов внутренняя энергия зависит только от одного макроскопического параметра — температуры и не зависит от объема, т. к. потенциальная энергия равна нулю (объем определяет среднее расстояние между молекулами).

Для реальных газов потенциальная энергия не равна нулю. Поэтому внутренняя энергия в тер-модинамике в общем случае однозначно определяется параметрами, характеризующими состоя-ние этих тел: объемом (V) и температурой (T) .

Тема: Внутренняя энергия идеального газа

Цель урока: повторить понятия внутренней энергии, идеального газа, вывести формулу для определения внутренней энергии идеального газа, рассмотреть изменение внутренней энергии во всех изопроцессах, происходящих в идеальном газе.

Ход урока

    Организационный момент

Деятельность учителя

Здравствуйте, девчонки! Садитесь!

Сегодня у нас очередной урок физике. Вы готовы окунуться в мир физике на 45 минут?

Какие цели мы ставим на данном уроке, и какие задачи мы будем решать?

Цели: изучение новой темы, применение полученных знаний при решении задач. Задачи: развитие творческих и исследовательских способностей, повышение интереса к физике.

    Повторение изученного материла. Проверка домашнего задания (13-15 мин).

Деятельность учителя

Предполагаемая деятельность учащихся

Сегодня проверка изученного материала и будет следующим образом.

Очередность высвечивания заданий и их проверка.

1. Проверка тестов.

2. Проверка решения качественных задач.

3. проверка количественных задач

4. Проверка графических задач

5.Проверка работ виртуальной лаборатории

6. видео ролик эксперимента

Вопрос: почему вода в цилиндре поднимается? Причина подъема воды?

Сегодня мы с вами рассмотрим внутреннюю энергию и изменение внутренней энергии в термодинамике.

Значит тема нашего урока?

Пишем сегодняшнее число и тему урока «Внутренняя энергия идеального газа»

1. группа 3-4 учащиеся выполняют экспериментальную работу. Проверка закона Гей-Люссака. Оборудование: термометр, горящая вода, холодная вода, цилиндр, пластилин, 2 стакана, линейка. Минивидеоролик эксперимента. Вычисления фото и видео передаем в Viber .

2. 1 -2 ученика должны составить вычислительную задачу средней сложности на применение газовых законов, сфотографировать и передать в Viber .

3. 1 -2 ученика должны в интернете найти качественную задачу на тему газовые законы и решить, Передать Viber .

4. 1 -2 ученика должны составить в график изопроцессов в V = V (Т) и перечертить в Р=Р(V ). Чертежи нарисовать на доске.

5. 1 -2 ученика должны выполнить работу по виртуальной лаборатории. СПбГУ

6. Остальные выполняют тестовые задания, по завершению которой включаются в работу по проверке выполненного задания другими учащимися, представленные на доске.

Уменьшение температуры воздуха внутри цилиндра;

Внутренняя энергия

    Изучение нового материала (13-15 мин).

Деятельность учителя

Предполагаемая деятельность учащихся

Что такое внутренняя энергия?

Идеальный газ?

Свойства идеального газа

Вывод формулы внутренней энергии одноатомного идеального газа.

    Формула внутренней энергии для одноатомного идеального газа. Одноатомные газы: гелий, неон, аргон.

    Формула внутренней энергии для двухатомного идеального газа. Двухатомные газы: кислород, водород, азот

    Формула внутренней энергии для многоатомного идеального газа. Многоатомные газы: углекислый газ, пар и т.д

Общая формула внутренней энергии идеального газа :

Изменение внутренней энергии идеального газа :

Какие изопроцессы мы с вами рассматривали, и определите изменение внутренней энергии в этих процессах.

Внутренняя энергия – потенциальная и кинетическая энергии всех молекул данного тела

Идеальный газ – это газ, межмолекулярные взаимодействия которого пренебрежимо мало.

1) межмолекулярные взаимодей-ствия отсутствуют: потенциальная энергия молекул идеального газа равна нулю;

2) взаимодействия происходят только при их соударениях, удары абсолютно упругие;

3) молекулы идеального газа – материальные точки

Отвечают на вопросы, участвуют в выводе формулы

Делают записи, расписывают физические величины

Изотермический процесс :

Изобарный процесс:

Изохорный процесс:

4. Закрепление изученного материала (15-17 мин)

Деятельность учителя

Предполагаемая деятельность учащихся

Задача:

Воздух массой 15 кг нагрели от температуры 100 о С до температуры 250 о С при постоянном давлении. Найдите изменение его внутренней энергии?

Учащиеся получают на электронную почту тест и решают задачи из теста самостоятельно

После завершения теста, ответы в автоматическом режиме высвечиваются на компьютере учителя

1 ученик оформляет решение задачи на доске. При решении применяется формула изменения внутренней энергии.

Учащиеся открывают почту решают тестовые задания.

5. Подведение итогов. Домашнее задание.

1Тест. Газовые законы

* Обязательно

Фамилия и имя *

В каком агрегатном состоянии вещества его молекулы хаотично движутся со средней скоростью 100 м/с *

    в газообразном и жидком

    только в газообразном

    в жидком и твердом

    в газообразном и твердом

Разряженный углекислый газ изобарно расширяется. Масса газа постоянна. Как надо изменить абсолютную температуру газа, чтобы увеличить его объем в 4 раза? *

    повысить в 16 раз

    повысить в 4 раза

    понизить в 16 раз

    понизить в 4 раза

Из стеклянного сосуда выпускают сжатый воздух, одновременно нагревая сосуд. При этом абсолютная температура воздуха в сосуде повысилась в 2 раза, а его давление увеличилось в 3 раза. Масса воздуха в сосуде уменьшилась в *

    6 раз

    3 раза

    1,5 раза

    2 раза

Согласно современным представлениям ядро атома углерода состоит из... *

    электронов и протонов

    нейтронов и позитронов

    одних протонов

    протонов и нейтронов

В баллоне находится 36*10^26 молекул газа. Какое примерно количество вещества в баллоне? *

6 моль

36 моль

6 кмоль

36 кмоль

2 Тест. Внутренняя энергия

Начало формы

Фамилия и имя

В каком из представленных примеров механическая энергия превращается во внутреннюю?

    Кипение воды на газовой конфорке

    попадание пули в мишень

    двигатель внутреннего сгорания

    нагревание металлической проволоки в пламени костра

    Вариант 5

10 моль разряженного гелия находится в сосуде при давлении выше атмосферного. Как изменится внутренняя энергия газа, если в сосуде сделать небольшое отверстие и его температуру поддерживать постоянной

    увеличится

    уменьшится

    не изменится

Как изменится внутренняя энергия воды в процессе ее нагревания от 25 С до 50 С?

    не изменится, т.к. не образуется кристаллическая решетка

    не изменяется, т.к. вода не кипит

    растет, т.к. температура увеличивается

    убывает, т.к. температура увеличивается

Идеальный газ изобарно сжимают. Как при этом изменяется внутренняя энергия газа?

    увеличивается

    уменьшается

    не изменяется

Как изменилась внутренняя энергия газа при медленном изотермическом сжатии на 0,2 куб.м. газа, находившегося в исходном состоянии под давлением 200 кПа? Ответ округлите до целых чисел.

Конец формы

Начало формы

Темы кодификатора ЕГЭ : внутренняя энергия, теплопередача, виды теплопередачи.

Частицы любого тела - атомы или молекулы - совершают хаотическое непрекращающееся движение (так называемое тепловое движение ). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела - это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом .

Внутренняя энергия термодинамической системы - это сумма внутренних энергий тел, входящих в систему .

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.
2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
3. Энергия электронов в атомах.
4. Внутриядерная энергия.

В случае простейшей модели вещества - идеального газа - для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма - ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

Совершение механической работы;
теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь:-) Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура - это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы - работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным . Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться - его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача - это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы . Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом .

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню - от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1 )(Изображение с сайта educationalelectronicsusa.com).

Рис. 1. Теплопроводность

Теплопроводность - это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела .

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела - такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи - конвекции.

Конвекция

Конвекция - это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества .

Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции - распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать . Если радиатор установить под потолком, то никакая циркуляция не возникнет - тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи - тепловое излучение . Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле...

В результате развития этого процесса в пространстве распространяется электромагнитная волна -«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой - в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет - частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет - это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше - частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением - в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна - довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 3 )(изображения с сайта beodom.com).

Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

Основной характеристикой внутреннего состояния физической системы является ее внутренняя энергия .

Внутренняя энергия (U ) включает в себя энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т.п..) и энергию взаимодействия этих частиц, т.е. кинетическую, потенциальную и т.д., за исключением суммарной энергии покоя всех частиц.

Свойства внутренней энергии

1. В состоянии термодинамического равновесия частицы, входящие в состав макроскопических тел, движутся так, что их полная энергия все время с высокой точностью равна внутренней энергии тела.

2. Внутренняя энергия является функцией состояния физической системы.

3. Внутренняя энергия физической системы не зависит от пути перехода ее из одного состояния в другое, а определяется только значениями внутренней энергии в начальном и конечном состояниях: D U = U 2 - U 1 .

4. Внутренняя энергия характеризуется свойством аддитивности, т.е. она равна суммарной внутренней энергии тел, входящих в систему.

Замечание: частицы газа, кроме поступательных степеней свободы, имеют еще и внутренние. Например, если частицами газа являются молекулы, то, кроме электронного движения, возможно вращение молекул, а также колебания атомов, входящих в состав молекул.

Поступательное движение частиц газа подчиняется классическим законам, а их внутренние движения носят квантовый характер. Лишь при определенных условиях внутренние степени свободы можно считать классическими.

Для расчета внутренней энергии идеального газа используют закон равнораспределения энергии по классическим степеням свободы. В случае идеального газа учитывается только кинетическая энергия поступательного движения частиц. Если частицами газа являются отдельные атомы, то каждый имеет три поступательные степени свободы.

Следовательно, каждый атом обладает средней кинетической энергией:

< e k > =3 kT /2.

Если газ состоит из N атомов, то его внутренняя энергия

Если же возбуждаются еще и колебательные степени свободы молекул, то вклад их во внутреннюю энергию

.

(1.27)

В формуле (1.27) учтено, что каждое колебательное движение молекул характеризуется средней кинетической и средней потенциальной энергиями, которые равны между собой. Поэтому согласно закону равнораспределения энергии по степеням свободы на одну колебательную степень свободы приходится в среднем энергия kT.

Таким образом, если молекула двухатомная, то полное число степеней свободы ее i =6. Три из них поступательные (i пост =3), две вращательные (i вр =2) и одна колебательная (i кол =1). При температурах, когда еще “заморожены” колебательные степени свободы, внутренняя энергия двухатомных молекул идеального газа .

Если же колебательные степени свободы “разморожены”, то внутренняя энергия двухатомных молекул идеального газа U = U пост + U вр + U кол =.

Таким образом, внутренняя энергия одноатомного идеального газа

U = N < e k > = (3/2)NkT ,

(1.28)

где < e k > = .

Число молей газа n =N/ N a = m / M, то

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

  1. кинетическая энергия поступательного, вращательного и колебательного движения молекул;
  2. потенциальная энергия взаимодействия атомов и молекул;
  3. внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела .

Внутренняя энергия - величина, характеризующая термодинамическое состояние тела. Каждое тело состоит из частиц, которые постоянно движутся и взаимодействуют друг с другом. Внутренняя энергия тела является суммой кинетической энергии движения частиц вещества и потенциальной энергии их взаимодействия.

Ч ислом степени свободы называется число независимых переменных, определяющих положение тела в пространстве и обозначается i .


Как видно, положение материальной точки (одноатомной молекулы) задаётся тремя координатами, поэтому она имеет три степени свободы : i = 3

Внутренняя энергия зависит от температуры. Если изменяется температура, значит изменяется внутренняя энергия.

Изменение внутренней энергии

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U2 - U1. Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.
Внутренняя энергия тела может изменяться двумя способами:

1. При совершении механической работы .

а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела.

б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии.

в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.

2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Проверяем усвоение материала: